首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   834篇
  免费   66篇
  900篇
  2023年   4篇
  2022年   9篇
  2021年   25篇
  2020年   14篇
  2019年   22篇
  2018年   30篇
  2017年   25篇
  2016年   23篇
  2015年   35篇
  2014年   44篇
  2013年   40篇
  2012年   51篇
  2011年   45篇
  2010年   45篇
  2009年   32篇
  2008年   54篇
  2007年   43篇
  2006年   41篇
  2005年   51篇
  2004年   42篇
  2003年   20篇
  2002年   30篇
  2001年   25篇
  2000年   9篇
  1999年   17篇
  1998年   7篇
  1997年   8篇
  1996年   3篇
  1995年   2篇
  1994年   6篇
  1993年   4篇
  1992年   11篇
  1991年   5篇
  1990年   3篇
  1989年   6篇
  1988年   7篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   9篇
  1983年   8篇
  1981年   4篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1976年   2篇
  1973年   5篇
  1972年   2篇
  1971年   3篇
  1970年   2篇
排序方式: 共有900条查询结果,搜索用时 13 毫秒
241.
Recent papers have described glutamine to arginine point mutations of the cloned AMPA/Kainate receptor subunits that alter current-voltage relationship and suppress Ca2+ permeability, thus linking these two characteristics. We describe a glutamine to histidine mutation at the same position, which alters current-voltage relationship but retains Ca2+ permeability, thus dissociating the two properties.  相似文献   
242.
243.
Hydrolysis of several N alpha-substituted L-arginine 4-nitroanilides with porcine pancreatic kallikrein was studied under different conditions of pH, temperature, and salt concentration. At high substrate concentrations a deviation from Michaelis-Menten kinetics was observed with a significant increase in the hydrolysis rates of almost all substrates. Kinetic data were analyzed on the assumption that porcine pancreatic kallikrein presents an additional binding site with lower affinity for the substrate. Binding to this auxiliary site gives rise to a modulated enzyme species which can hydrolyze an additional molecule of the substrate through a second catalytic pathway. The values of both Michaelis-Menten and catalytic rate constants were higher for the modulated species than for the free enzyme, suggesting a mechanism of enzyme activation by substrate. Kinetic data indicated similar substrate requirements for binding at the primary and auxiliary sites of the enzyme. Tris(hydroxymethyl)aminomethane hydrochloride and NaCl were shown to alter the kinetic parameters of the hydrolysis of N alpha-acetyl-L-Phe-L-Arg 4-nitroanilide by porcine pancreatic kallikrein but not the enzyme activation pattern (ratio of the catalytic constants for the activated and the free enzyme forms). Similar observations were made when the hydrolysis of D-Val-L-Leu-L-Arg 4-nitroanilide was studied under different pH and temperature conditions.  相似文献   
244.
The present work reports on a study of plant regeneration carried out with callus from the leaf blades and petioles of field-grown male adult kiwifruit plants (Actinidia deliciosa (Chev.) Liang and Ferguson). The cultivars used were ‘Tomuri’ and clone A, a selected male plant grown in north western Spain. The best shoot induction conditions were obtained in ‘Tomuri’ leaf blades cultured in K(h) medium in the presence of 23 μM Zeatin and 0.1 μM NAA. Under these conditions, more than 80% of organogenic callus induction was observed, with an average of 14 new shoots in the second subculture. The initial length of the shoots affected shoot elongation, which was accomplished by culturing isolated shoots in K(h) medium with half-strength salts, supplemented with 0.4 μM Zeatin and 0.1 μM NAA. A possible detrimental long-term effect of cytokinins on shoot elongation can account for the results, since elongation was not observed until 1 month of culture in elongation medium. For rooting, shoots (1 cm in length) were basally immersed in a 5 mM IBA solution for 15 s, and transferred to half-strength K(h) basal medium. Regenerated plants were acclimated in a sterile peat:perlite substrate for 10 days, and then transferred to soil. AFLP analysis was accomplished with 15 primer combinations from which 13 showed reproducible and well-resolved bands, producing a total of 1321 fragments from which 1281 were polymorphic (97%). A dendrogram was constructed using both monomorphic and polymorphic bands, showing genetic variation among field-grown plants and tissue culture-derived regenerants.  相似文献   
245.
Lysinibacillus sphaericus strains belonging the antigenic group H5a5b produce spores with larvicidal activity against larvae of Culex mosquitoes. C7, a new isolated strain, which presents similar biochemical characteristics and Bin toxins in their spores as the reference strain 2362, was, however, more active against larvae of Culex mosquitoes. The contribution of the surface layer protein (S-layer) to this behaviour was envisaged since this envelope protein has been implicated in the pathogenicity of several bacilli, and we had previously reported its association to spores. Microscopic observation by immunofluorescence detection with anti S-layer antibody in the spores confirms their attachment. S-layers and BinA and BinB toxins formed high molecular weight multimers in spores as shown by SDS-PAGE and western blot detection. Purified S-layer from both L. sphaericus C7 and 2362 strain cultures was by itself toxic against Culex sp larvae, however, that from C7 strain was also toxic against Aedes aegypti. Synergistic effect between purified S-layer and spore-crystal preparations was observed against Culex sp. and Aedes aegypti larvae. This effect was more evident with the C7 strain. In silico analyses of the S-layer sequence suggest the presence of chitin-binding and hemolytic domains. Both biochemical characteristics were detected for both S-layers strains that must justify their contribution to pathogenicity.  相似文献   
246.
247.
BackgroundPulmonary emphysema is characterized by irreversible airflow obstruction, inflammation, oxidative stress imbalance and lung remodeling, resulting in reduced lung function and a lower quality of life. Flavonoids are plant compounds with potential anti-inflammatory and antioxidant effects that have been used in folk medicine. Our aim was to determine whether treatment with sakuranetin, a flavonoid extracted from the aerial parts of Baccharis retusa, interferes with the development of lung emphysema.MethodsIntranasal saline or elastase was administered to mice; the animals were then treated with sakuranetin or vehicle 2 h later and again on days 7, 14 and 28. We evaluated lung function and the inflammatory profile in bronchoalveolar lavage fluid (BALF). The lungs were removed to evaluate alveolar enlargement, extracellular matrix fibers and the expression of MMP-9, MMP-12, TIMP-1, 8-iso-PGF-2α and p65-NF-κB in the fixed tissues as well as to evaluate cytokine levels and p65-NF-κB protein expression.ResultsIn the elastase-treated animals, sakuranetin treatment reduced the alveolar enlargement, collagen and elastic fiber deposition and the number of MMP-9- and MMP-12-positive cells but increased TIMP-1 expression. In addition, sakuranetin treatment decreased the inflammation and the levels of TNF-α, IL-1β and M-CSF in the BALF as well as the levels of NF-κB and 8-iso-PGF-2α in the lungs of the elastase-treated animals. However, this treatment did not affect the changes in lung function.ConclusionThese data emphasize the importance of oxidative stress and metalloproteinase imbalance in the development of emphysema and suggest that sakuranetin is a potent candidate that should be further investigated as an emphysema treatment. This compound may be useful for counteracting lung remodeling and oxidative stress and thus attenuating the development of emphysema.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0233-3) contains supplementary material, which is available to authorized users.  相似文献   
248.
249.

Introduction

IFNα has been largely implicated in the ethiopathogenesis of autoimmune diseases but only recently it has been linked to endothelial damage and accelerated atherosclerosis in autoimmunity. In addition, proinflammatory conditions are supposed to be implicated in the cardiovascular status of these patients. Since a role for IFNα in endothelial damage and impaired Endothelial Progenitor Cell (EPC) number and function has been reported in other diseases, we aimed to evaluate the potential associations of IFNα serum levels on EPC populations and cytokine profiles in Rheumatoid Arthritis (RA) patients.

Methods

pre-EPC, EPC and mature EPC (mEPC) populations were quantified by flow cytometry analyzing their differential CD34, CD133 and VEGFR2 expression in blood samples from 120 RA patients, 52 healthy controls (HC), and 83 systemic lupus erythematosus (SLE) patients as disease control. Cytokine serum levels were measured by immunoassays and clinical and immunological data, including cardiovascular (CV) events and CV risk factors, were retrospectively obtained by reviewing clinical records.

Results

Long-standing, but not recent onset RA patients displayed a significant depletion of all endothelial progenitor populations, unless high IFNα levels were present. In fact, the IFNhigh RA patient group (n = 40, 33%), showed increased EPC levels, comparable to SLE patients. In addition, high IFNα serum levels were associated with higher disease activity (DAS28), presence of autoantibodies, higher levels of IL-1β, IL-6, IL-10 and MIP-1α, lower amounts of TGF-β, and increased mEPC/EPC ratio, thus suggesting higher rates of endothelial damage and an endothelial repair failure. Finally, the relationship between high IFNα levels and occurrence of CV events observed in RA patients seems to support this hypothesis.

Conclusions

IFNα serum marker could be used to identify a group of RA patients with increased disease activity, EPC imbalance, enhanced proinflammatory profile and higher cardiovascular risk, probably due, at least in part, to an impaired endothelial repair.  相似文献   
250.
Stress-inducible phosphoprotein 1 (STI1), a cochaperone for Hsp90, has been shown to regulate multiple pathways in astrocytes, but its contributions to cellular stress responses are not fully understood. We show that in response to irradiation-mediated DNA damage stress STI1 accumulates in the nucleus of astrocytes. Also, STI1 haploinsufficiency decreases astrocyte survival after irradiation. Using yeast two-hybrid screenings we identified several nuclear proteins as STI1 interactors. Overexpression of one of these interactors, PIAS1, seems to be specifically involved in STI1 nuclear retention and in directing STI1 and Hsp90 to specific sub-nuclear regions. PIAS1 and STI1 co-immunoprecipitate and PIAS1 can function as an E3 SUMO ligase for STI. Using mass spectrometry we identified five SUMOylation sites in STI1. A STI1 mutant lacking these five sites is not SUMOylated, but still accumulates in the nucleus in response to increased expression of PIAS1, suggesting the possibility that a direct interaction with PIAS1 could be responsible for STI1 nuclear retention. To test this possibility, we mapped the interaction sites between PIAS1 and STI1 using yeast-two hybrid assays and surface plasmon resonance and found that a large domain in the N-terminal region of STI1 interacts with high affinity with amino acids 450–480 of PIAS1. Knockdown of PIAS1 in astrocytes impairs the accumulation of nuclear STI1 in response to irradiation. Moreover, a PIAS1 mutant lacking the STI1 binding site is unable to increase STI1 nuclear retention. Interestingly, in human glioblastoma multiforme PIAS1 expression is increased and we found a significant correlation between increased PIAS1 expression and STI1 nuclear localization. These experiments provide evidence that direct interaction between STI1 and PIAS1 is involved in the accumulation of nuclear STI1. This retention mechanism could facilitate nuclear chaperone activity.Stress-inducible phosphoprotein I (STI1)1 is a conserved cochaperone protein that assists Hsp90 in managing client proteins, by mediating the transfer of proteins between Hsp70 and Hsp90 (13). STI1 contains several tetratricopeptide-repeat domains (TRP) that can serve as interaction modules with Hsp90 and Hsp70 (4). STI1 helps to drive the sequential steps involved in the Hsp90 chaperone machinery (5) and regulates the ATPase activity of Hsp90 (6, 7). STI1 is also secreted by distinct cells (812), using a noncanonical mechanism involving extracellular vesicles (11). Secreted STI1 can activate multiple signaling pathways in distinct cell types (810, 1318).Elimination of STI1 in yeast sensitizes cells to Hsp90 inhibitors, but it is not by itself lethal (19). STI1 can also be eliminated in C. elegans, although it results in decreased life span (20). In contrast, STI1 mutant mice do not survive E10.5 and present several morphological defects, owing to decreased levels of several Hsp90-client proteins (21). Mouse embryonic fibroblasts obtained from STI1-deficient embryos also fail to thrive and present increased levels of the DNA damage marker γ-H2AX, suggestive of increased cellular stress (21). Hence, in mammals STI1 seems to play additional roles in cellular survival that are not yet fully understood.STI1 is abundantly expressed in the cytoplasm of cells, but can also be found in the Golgi (22), in vesicles and in multivesicular bodies (11). Moreover, this cochaperone has been shown to shuttle between the cytoplasm and the nucleus in cell lines (23). Cellular stress, arrest in G1/S phase of the cell cycle and phosphorylation are factors that seem to regulate STI1 nuclear localization (23, 24). Presumably nuclear STI1 can regulate chaperone activity, but whether it can interact with nuclear proteins is unknown.Previous experiments using cell lines have shown that knockdown of STI1 increases susceptibility of cells to irradiation (25). Whether changes in STI1 levels in primary differentiated cells, such as astrocytes, may affect their response to irradiation stress is unknown. This is of interest, as astrocytes, which can give rise to distinct tumor cells, are highly radioresistant (26). Indeed, astrocytes have a noncanonical DNA damage response (DDR) to irradiation (26). Here we show that STI1 undergoes nuclear translocation in astrocytes after γ-radiation-induced DNA damage. Moreover, astrocytes haploinsufficient for STI1 are more susceptible to cell death induced by irradiation. To understand potential mechanisms involved with STI1 nuclear retention, we have performed yeast-two hybrid screenings to identify STI1 nuclear partners. We identified protein inhibitor of activated STAT (PIAS1) as a direct interactor of STI1 and provide evidence that it acts as a small ubiquitin-like modifier (SUMO) E3 ligase for STI1. We show this interaction is involved with STI1 nuclear retention after irradiation. Interestingly, tissue microarray analysis demonstrated that higher PIAS1 levels are found in glioblastoma multiforme (GBM) when compared with non-neoplastic tissue. Furthermore, we uncovered a positive relationship between increased PIAS1 expression in GBMs and augmented STI1 nuclear localization. Our results reveal a novel mechanism by which increased expression of PIAS1, as observed in GBM, can increase the retention of nuclear STI1, a critical regulator of the chaperone machinery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号