首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1819篇
  免费   204篇
  国内免费   3篇
  2026篇
  2021年   18篇
  2019年   15篇
  2018年   14篇
  2017年   14篇
  2016年   23篇
  2015年   52篇
  2014年   66篇
  2013年   74篇
  2012年   87篇
  2011年   86篇
  2010年   54篇
  2009年   48篇
  2008年   64篇
  2007年   61篇
  2006年   60篇
  2005年   71篇
  2004年   64篇
  2003年   60篇
  2002年   80篇
  2001年   67篇
  2000年   55篇
  1999年   49篇
  1998年   25篇
  1997年   28篇
  1996年   19篇
  1995年   20篇
  1994年   23篇
  1993年   33篇
  1992年   33篇
  1991年   42篇
  1990年   30篇
  1989年   33篇
  1988年   26篇
  1987年   34篇
  1986年   24篇
  1985年   24篇
  1984年   20篇
  1983年   22篇
  1980年   19篇
  1978年   18篇
  1977年   19篇
  1976年   14篇
  1975年   14篇
  1974年   24篇
  1973年   16篇
  1972年   16篇
  1971年   16篇
  1970年   22篇
  1968年   15篇
  1967年   22篇
排序方式: 共有2026条查询结果,搜索用时 15 毫秒
921.
Aspirin treatment of leaves of Nicotiana tabacum cv. Samsun at 20°C induced PR-proteins and reduced the amount of tobacco mosaic virus (TMV) accumulated 7 days after inoculation. However, at 32°C both the amount of PR-proteins induced and the reduction of TMV accumulated were less. Polyacrylic acid did not induce PR-proteins, and caused little or no reduction in the amount of TMV accumulated at 20°C. In cv. Samsun NN at 32°C. aspirin induced the PR-proteins and reduced the spread of TMV to surrounding tissue as treasured by the size of lesions produced on subsequent transfer to 20°C. Polyacrylic acid did not induce PR-proteins in Samsun NN and had no effect on the spread of TMV. In cv. Xanthi-ne, at 32°C aspirin and polyacrylic acid induced PR-proteins and reduced the spread of TMV. At 35°C, polyacrylic acid induced little or no PR-proteins and did not affect the spread of TMV.  相似文献   
922.
We have previously reported that anti-tubulin agents induce the release of cytochrome c from isolated mitochondria. In this study, we show that tubulin is present in mitochondria isolated from different human cancerous and non-cancerous cell lines. The absence of polymerized microtubules and cytosolic proteins was checked to ensure that this tubulin is an inherent component of the mitochondria. In addition, a salt wash did not release the tubulin from the mitochondria. By using electron microscopy, we then showed that tubulin is localized in the mitochondrial membranes. As compared with cellular tubulin, mitochondrial tubulin is enriched in acetylated and tyrosinated alpha-tubulin and is also enriched in the class III beta-tubulin isotype but contains very little of the class IV beta-tubulin isotype. The mitochondrial tubulin is likely to be organized in alpha/beta dimers and represents 2.2 +/- 0.5% of total cellular tubulin. Lastly, we showed by immunoprecipitation experiments that the mitochondrial tubulin is specifically associated with the voltage-dependent anion channel, the main component of the permeability transition pore. Thus, tubulin is an inherent component of mitochondrial membranes, and it could play a role in apoptosis via interaction with the permeability transition pore.  相似文献   
923.
924.

Purpose

Retinal dystrophies are genetically heterogeneous, resulting from mutations in over 200 genes. Prior to the development of massively parallel sequencing, comprehensive genetic screening was unobtainable for most patients. Identifying the causative genetic mutation facilitates genetic counselling, carrier testing and prenatal/pre-implantation diagnosis, and often leads to a clearer prognosis. In addition, in a proportion of cases, when the mutation is known treatment can be optimised and patients are eligible for enrolment into clinical trials for gene-specific therapies.

Methods

Patient genomic DNA was sheared, tagged and pooled in batches of four samples, prior to targeted capture and next generation sequencing. The enrichment reagent was designed against genes listed on the RetNet database (July 2010). Sequence data were aligned to the human genome and variants were filtered to identify potential pathogenic mutations. These were confirmed by Sanger sequencing.

Results

Molecular analysis of 20 DNAs from retinal dystrophy patients identified likely pathogenic mutations in 12 cases, many of them known and/or confirmed by segregation. These included previously described mutations in ABCA4 (c.6088C>T,p.R2030*; c.5882G>A,p.G1961E), BBS2 (c.1895G>C,p.R632P), GUCY2D (c.2512C>T,p.R838C), PROM1 (c.1117C>T,p.R373C), RDH12 (c.601T>C,p.C201R; c.506G>A,p.R169Q), RPGRIP1 (c.3565C>T,p.R1189*) and SPATA7 (c.253C>T,p.R85*) and new mutations in ABCA4 (c.3328+1G>C), CRB1 (c.2832_2842+23del), RP2 (c.884-1G>T) and USH2A (c.12874A>G,p.N4292D).

Conclusions

Tagging and pooling DNA prior to targeted capture of known retinal dystrophy genes identified mutations in 60% of cases. This relatively high success rate may reflect enrichment for consanguineous cases in the local Yorkshire population, and the use of multiplex families. Nevertheless this is a promising high throughput approach to retinal dystrophy diagnostics.  相似文献   
925.
The receptor systems for the hemopoietic cytokines GM-CSF, IL-3, and IL-5 consist of ligand-specific alpha receptor subunits that play an essential role in the activation of the shared betac subunit, the major signaling entity. Here, we report the structure of the complete betac extracellular domain. It has a structure unlike any class I cytokine receptor described thus far, forming a stable interlocking dimer in the absence of ligand in which the G strand of domain 1 hydrogen bonds into the corresponding beta sheet of domain 3 of the dimer-related molecule. The G strand of domain 3 similarly partners with the dimer-related domain 1. The structure provides new insights into receptor activation by the respective alpha receptor:ligand complexes.  相似文献   
926.
927.
In order to investigate the molecular mechanism(s) by which TRH regulates the biosynthesis of TSH, we are studying the effects of TRH on the expression of the TSH subunit genes (alpha and TSH beta). To study the structure-function relation of TRH stimulation of the activity of the single rat TSH beta gene, chimaeric plasmids were constructed. The 5'-flanking region of the rat TSH beta gene including exon 1 (5'-untranslated region) was inserted into a promoterless, modified pBR, chloramphenicol acetyltransferase (CAT) expression vector. After transfection, specific TSH beta promoter activity was evident in both TRH-responsive pituitary-derived GH3 and primary pituitary cell cultures. To determine potential regulation of TSH beta promoter-directed activity in these cells by TRH, cells were incubated with media containing TRH (10(-7) to 10(-11) M) for 1 to 48 h. TRH stimulated a 1.5- to 3-fold increase in TSH beta promoter activity. Concomitant with an increase in CAT activity was an anticipated increase in PRL synthesis in the GH3 cells in response to TRH. The TRH effect on the TSH beta gene was specific; no increase in CAT activity was detected for TKCAT (thymidine kinase of herpes simplex virus promoter), pBRCAT (no promoter), or TSH beta CAT (3'-5'-orientation). Similar results were obtained using primary pituitary cell cultures. Deletion mutation analysis indicated that TRH sensitivity was detected in a 1.1 kilobase, but not in a 0.38 kilobase TSH beta gene fragment suggesting that the TRH responsive element(s) resides at least in part within the 700 base pairs of the 5'-flanking sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
928.
929.
The Escherichia coli dnaA73, dnaA721, and dnaA71 alleles, which encode A213D, R432L, T435K substitutions, respectively, were originally isolated as extragenic suppressors of a temperature-sensitive dnaX mutant. As the A213D substitution resides in a domain that functions in ATP binding and the R432L and T435K substitutions affect residues that recognize the DnaA box motif, they might be expected to reduce ATP and specific DNA binding, respectively. Therefore, a major objective was to quantify the biochemical defects of the mutant DnaAs to understand how the altered proteins suppress the temperature-sensitive phenotype of a dnaX mutant. A second purpose was to address the paradox that mutant proteins with substitutions of amino acids essential for recognition of the DnaA box motifs within the E. coli replication origin (oriC) may well be inactive in initiation, yet chromosomal dnaA mutants expressing DnaA proteins with the R432L and T435K substitutions are viable at temperatures from 30 to 39 degrees C. We show biochemically that mutant DnaAs carrying R432L and T435K substitutions fail to bind to the DnaA box sequence. The A213D mutant is sevenfold reduced in its affinity for ATP compared to wild-type DnaA, and its affinity for the DnaA box sequence is also reduced. However, the reduced activity of the A213D mutant in oriC plasmid replication appears to arise from a defect in DnaA oligomerization. Although the T435K mutant fails to bind to the DnaA box sequence, other results suggest that DnaA oligomerization stabilizes the binding of the mutant DnaA to oriC to support its partial activity in initiation in vitro. These results support a model that suppression of dnaX occurs by reducing the frequency of initiation to a manageable level for the mutant DnaX so that viability is maintained.  相似文献   
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号