首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   9篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2018年   4篇
  2017年   1篇
  2016年   5篇
  2015年   8篇
  2014年   8篇
  2013年   7篇
  2012年   6篇
  2011年   11篇
  2010年   9篇
  2009年   6篇
  2008年   4篇
  2007年   9篇
  2006年   10篇
  2005年   5篇
  2004年   12篇
  2003年   3篇
  2002年   6篇
  2001年   5篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1994年   1篇
  1991年   3篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有160条查询结果,搜索用时 46 毫秒
21.
TR2 (TNFR-related 2, HVEM, or TNFRSF-14), a member of the TNFR family, is involved in a number of immune responses. While TR2 is expressed on the surface of T cells during the resting state, little is known regarding how expression of the TR2 gene is regulated. To understand the mechanisms regulating the expression of TR2 in T cells, we analyzed the 5' flanking region of TR2. We identified an important region for the activity of the TR2 promoter using site directed mutagenesis. Using EMSA analysis, we found that IRF-2 was bound to the promoter region of the TR2 gene during the resting state of EL-4 T cells. Transfection of IRF-2 expression plasmid and of dominant negative IRF-2 mutant further confirmed our results. Together, these data demonstrate that IRF-2 is involved in the regulation of TR2 expression in EL-4 T cells.  相似文献   
22.
Bora Sul 《Biophysical journal》2009,97(10):2653-2663
The effectiveness of hair bundle motility in mammalian and avian ears is studied by examining energy balance for a small sinusoidal displacement of the hair bundle. The condition that the energy generated by a hair bundle must be greater than energy loss due to the shear in the subtectorial gap per hair bundle leads to a limiting frequency that can be supported by hair-bundle motility. Limiting frequencies are obtained for two motile mechanisms for fast adaptation, the channel re-closure model and a model that assumes that fast adaptation is an interplay between gating of the channel and the myosin motor. The limiting frequency obtained for each of these models is an increasing function of a factor that is determined by the morphology of hair bundles and the cochlea. Primarily due to the higher density of hair cells in the avian inner ear, this factor is ∼10-fold greater for the avian ear than the mammalian ear, which has much higher auditory frequency limit. This result is consistent with a much greater significance of hair bundle motility in the avian ear than that in the mammalian ear.  相似文献   
23.
In this study, various solvent systems were applied to obtain a high and consistent recovery rate of low molecular weight plasma proteins (LMPP) from human plasma. A buffer system containing 7 M urea, 2 M thiourea, 25 mM NH4HCO3 + 20% ACN (pH 8.2) produced the highest recovery rate of LMPP. To validate the recovery of cut off membrane (COM) obtained using the urea buffer system, 27 different 30 kDa COMs were used to prepare the LMPP sample which were then subjected to 1‐D SDS‐PAGE. Statistical analysis showed that the buffer system with COM produced a consistent the recovery of LMPP. In addition, 2‐DE analysis was also conducted to determine the relative intensity of each protein spot. When molecular weight ranges over 30 kDa and under 30 kDa were evaluated, 953 and 587 protein spots were observed in the gels, respectively, resulting in a total of 1540 protein spots being resolved. Identification of the major proteins were then performed using a nano‐LC/MS system comprised of an HPLC system and an ESI‐quadrupole IT MS equipped with a nano‐ESI source.  相似文献   
24.
Sul JH  Han B  He D  Eskin E 《Genetics》2011,188(1):181-188
The advent of next generation sequencing technologies allows one to discover nearly all rare variants in a genomic region of interest. This technological development increases the need for an effective statistical method for testing the aggregated effect of rare variants in a gene on disease susceptibility. The idea behind this approach is that if a certain gene is involved in a disease, many rare variants within the gene will disrupt the function of the gene and are associated with the disease. In this article, we present the rare variant weighted aggregate statistic (RWAS), a method that groups rare variants and computes a weighted sum of differences between case and control mutation counts. We show that our method outperforms the groupwise association test of Madsen and Browning in the disease-risk model that assumes that each variant makes an equally small contribution to disease risk. In addition, we can incorporate prior information into our method of which variants are likely causal. By using simulated data and real mutation screening data of the susceptibility gene for ataxia telangiectasia, we demonstrate that prior information has a substantial influence on the statistical power of association studies. Our method is publicly available at http://genetics.cs.ucla.edu/rarevariants.  相似文献   
25.
Curcumin has anti-oxidative activity. In view of the increasing evidence for a biochemical link between increased oxidative stress and reduced bone density we hypothesized that curcumin might increase bone density by elevating antioxidant activity in some target cell type. We measured bone density by Micro-CT, enzyme expression levels by quantitative PCR or enzyme activity, and osteoclast (OC) formation by tartrate-resistant acid phosphatase staining. The bone mineral density of the femurs of curcumin-administered mice was significantly higher than that of vehicle-treated mice after ovariectomy (OVX) and this was accompanied by reduced amounts of serum collagen-type I fragments, which are markers of bone resorption. Curcumin suppressed OC formation by increasing receptor activator of nuclear factor-κB ligand (RANKL)-induced glutathione peroxidase-1, and reversed the stimulatory effect of homocysteine, a known H(2) O(2) generator, on OC formation by restoring Gpx activity. Curcumin generated an aberrant RANKL signal characterized by reduced expression of nuclear factor of activated T cells 2 (NFAT2) and attenuated activation of mitogen-activated protein kinases (ERK, JNK, and p38). Curcumin thus inhibited OVX-induced bone loss, at least in part by reducing osteoclastogenesis as a result of increased antioxidant activity and impaired RANKL signaling. These findings suggest that bone loss associated with estrogen deficiency could be attenuated by curcumin administration.  相似文献   
26.
Late-onset Alzheimer’s disease (LOAD) is the most common type of dementia causing irreversible brain damage to the elderly and presents a major public health challenge. Clinical research and genome-wide association studies have suggested a potential contribution of the endocytic pathway to AD, with an emphasis on common loci. However, the contribution of rare variants in this pathway to AD has not been thoroughly investigated. In this study, we focused on the effect of rare variants on AD by first applying a rare-variant gene-set burden analysis using genes in the endocytic pathway on over 3,000 individuals with European ancestry from three large whole-genome sequencing (WGS) studies. We identified significant associations of rare-variant burden within the endocytic pathway with AD, which were successfully replicated in independent datasets. We further demonstrated that this endocytic rare-variant enrichment is associated with neurofibrillary tangles (NFTs) and age-related phenotypes, increasing the risk of obtaining severer brain damage, earlier age-at-onset, and earlier age-of-death. Next, by aggregating rare variants within each gene, we sought to identify single endocytic genes associated with AD and NFTs. Careful examination using NFTs revealed one significantly associated gene, ANKRD13D. To identify functional associations, we integrated bulk RNA-Seq data from over 600 brain tissues and found two endocytic expression genes (eGenes), HLA-A and SLC26A7, that displayed significant influences on their gene expressions. Differential expressions between AD patients and controls of these three identified genes were further examined by incorporating scRNA-Seq data from 48 post-mortem brain samples and demonstrated distinct expression patterns across cell types. Taken together, our results demonstrated strong rare-variant effect in the endocytic pathway on AD risk and progression and functional effect of gene expression alteration in both bulk and single-cell resolution, which may bring more insight and serve as valuable resources for future AD genetic studies, clinical research, and therapeutic targeting.  相似文献   
27.
Astrocytes play a critical role in brain function, but their contribution during ethanol (EtOH) consumption remains largely understudied. In light of recent findings on the heterogeneity of astrocyte physiology and gene expression, an approach with the ability to identify subtypes and capture this heterogeneity is necessary. Here, we combined measurements of calcium signaling and gene expression to define EtOH-induced astrocyte subtypes. In the absence of a demonstrated EtOH receptor, EtOH is believed to have effects on the function of many receptors and downstream biological cascades that underlie calcium responsiveness. This mechanism of EtOH-induced calcium signaling is unknown and this study provides the first step in understanding the characteristics of cells displaying these observed responses. To characterize underlying astrocyte subtypes, we assessed the correlation between calcium signaling and astrocyte gene expression signature in response to EtOH. We found that various EtOH doses increased intracellular calcium levels in a subset of astrocytes, distinguishing three cellular response types and one nonresponsive subtype as categorized by response waveform properties. Furthermore, single-cell RNA-seq analysis of astrocytes from the different response types identified type-enriched discriminatory gene expression signatures. Combining single-cell calcium responses and gene expression analysis identified specific astrocyte subgroups among astrocyte populations defined by their response to EtOH. This result provides a basis for identifying the relationship between astrocyte susceptibility to EtOH and corresponding measurable markers of calcium signaling and gene expression, which will be useful to investigate potential subgroup-specific influences of astrocytes on the physiology and pathology of EtOH exposure in the brain.  相似文献   
28.
29.
30.
pref-1 is an epidermal growth factor-like repeat protein present on the surface of preadipocytes that functions in the maintenance of the preadipose state. pref-1 expression is completely abolished during 3T3-L1 adipocyte differentiation. Bypassing this downregulation by constitutive expression of full-length transmembrane pref-1 in preadipocytes drastically inhibits differentiation. For the first time, we show processing of cell-associated pref-1 to generate both a soluble pref-1 protein of approximately 50 kDa that corresponds to the ectodomain and also smaller products of 24 to 25 kDa and 31 kDa. Furthermore, while all four of the alternately spliced forms of pref-1 produce cell-associated protein, only the two largest of the four alternately spliced isoforms undergo cleavage in the juxtamembrane region to release the soluble 50-kDa ectodomain. We demonstrate that addition of Escherichia coli-expressed pref-1 ectodomain to 3T3-L1 preadipocytes blocks differentiation, thus overriding the adipogenic actions of dexamethasone and methylisobutylxanthine. The inhibitory effects of the pref-1 ectodomain are blocked by preincubation of the protein with pref-1 antibody. That the ectodomain alone is sufficient for inhibition demonstrates that transmembrane pref-1 can be processed to generate an inhibitory soluble form, thereby greatly extending its range of action. Furthermore, we present evidence that alternate splicing is the mechanism that governs the production of transmembrane versus soluble pref-1, thereby determining the mode of action, juxtacrine or paracrine, of the pref-1 protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号