首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   9篇
  160篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2018年   4篇
  2017年   1篇
  2016年   5篇
  2015年   8篇
  2014年   8篇
  2013年   7篇
  2012年   6篇
  2011年   11篇
  2010年   9篇
  2009年   6篇
  2008年   4篇
  2007年   9篇
  2006年   10篇
  2005年   5篇
  2004年   12篇
  2003年   3篇
  2002年   6篇
  2001年   5篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1994年   1篇
  1991年   3篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
101.
This study profiled the plasma proteins of patients infected by the 2011 H1N1 influenza virus. Differential protein expression was identified in plasma obtained from noninfected control subjects (n = 15) and H1N1‐infected subjects (n = 15). Plasma proteins were separated by a 2DE large gel system and identified by nano‐ultra performance LC‐MS. Western blot assays were performed to validate proteins. Eight plasma proteins were upregulated and six proteins were downregulated among 3316 plasma proteins in the H1N1‐infected group as compared with the control group. Of 14 up‐ and downregulated proteins, nine plasma proteins were validated by Western blot analysis. Putative protein FAM 157A, leucine‐rich alpha 2 glycoprotein, serum amyloid A protein, and dual oxidase 1 showed significant differential expression. The identified plasma proteins could be potential candidates for biomarkers of H1N1 influenza viral infection. Further studies are needed to develop these proteins as diagnostic biomarkers.  相似文献   
102.
H-rev107 is downregulated in many carcinomas and tumor cell lines. Using postconfluent NIH3T3 cells, we demonstrated that growth arrest caused by contact inhibition, but not serum deprivation, increased H-rev107 expression. Furthermore, histone deacetylase inhibitors induced H-rev107 expression in NIH3T3 cells and allowed its reexpression in H-rev107-deficient WEHI 7.1 lymphoma cells. In contrast, no effect of the postconfluent stage or histone deacetylase inhibitors on H-rev107 levels was observed in tumorigenic H-rev107-expressing cell lines, HepG2, HeLa, and SKBR3. Transfections showed that TSA treatment increased luciferase activity 20-fold in NIH3T3 cells. We found that the GC-box at -83/-75 is a key element for H-rev107 induction by TSA and growth arrest, although there were no changes in the pattern and intensity of Sp1/Sp3-binding after induction. These data suggest that contact inhibition of growth and growth arrest caused by histone deacetylase inhibitors probably use the same mechanism to stimulate H-rev107 expression via histone acetylation in NIH3T3 cells and this might contribute to the development of drugs that can induce H-rev107 expression in certain tumors.  相似文献   
103.
Matrix-producing osteoblasts and bone-resorbing osteoclasts maintain bone homeostasis. Osteoclasts are multinucleated, giant cells of hematopoietic origin formed by the fusion of mononuclear pre-osteoclasts derived from myeloid cells. Fusion-mediated giant cell formation is critical for osteoclast maturation; without it, bone resorption is inefficient. To understand how osteoclasts differ from other myeloid lineage cells, we previously compared global mRNA expression patterns in these cells and identified genes of unknown function predominantly expressed in osteoclasts, one of which is the d2 isoform of vacuolar (H(+)) ATPase (v-ATPase) V(0) domain (Atp6v0d2). Here we show that inactivation of Atp6v0d2 in mice results in markedly increased bone mass due to defective osteoclasts and enhanced bone formation. Atp6v0d2 deficiency did not affect differentiation or the v-ATPase activity of osteoclasts. Rather, Atp6v0d2 was required for efficient pre-osteoclast fusion. Increased bone formation was probably due to osteoblast-extrinsic factors, as Atp6v02 was not expressed in osteoblasts and their differentiation ex vivo was not altered in the absence of Atp6v02. Our results identify Atp6v0d2 as a regulator of osteoclast fusion and bone formation, and provide genetic data showing that it is possible to simultaneously inhibit osteoclast maturation and stimulate bone formation by therapeutically targeting the function of a single gene.  相似文献   
104.
The taxonomic status of new prospective bacteriocin-synthesizing strains of mesophilic lactococci isolated from raw milk and milk products from different regions of Russia and also of strain F-119, obtained by protoplast fusion of two related strains with low bacteriocin-synthesizing activity, was established by classical methods of identification. The values of antibiotic activity displayed by the strains toward a test microorganism Bacillus coagulans were up to 4650 IU/ml, which is significantly higher than in natural lactococci strains. In spite of some differences in morphology, ability to ferment carbohydrates, requirements for nutrients, and antibiotic suspectability, the strains were identified as Lactococcus lactis subsp. lactis. The new strains differed from the classic nisin-producing strain L. lactis subsp. lactis MGU by a remarkably broad spectrum of bactericidal and fungicidal activity. Study of 16S rRNA gene sequences of new natural strains, fusants F-119 and another one obtained earlier, F-116, and their parental strains in comparison with reference strains confirmed the new strains’ taxonomic status as Lactococcus lactis subsp. lactis. The nucleotide sequences of 16S rRNA genes were deposited with GenBank under accession numbers EF100777-EF114305.  相似文献   
105.
Gene-targeted FLX titanium pyrosequencing integrated with stable isotope probing (SIP) using [(13)C]biphenyl substrate revealed that tidal mudflat sediments harbor novel aromatic ring hydroxylating dioxygenases (ARHD). More than 80% of the detected ARHD genes comprise four clades (0.5 distance) with 49 to 70% amino acid identity to sequences in public databases. The 16S rRNA sequences enriched in the (13)C fraction were from the Betaproteobacteria, bacilli (primarily Paenibacillus-like), and unclassified phyla.  相似文献   
106.
We previously reported that 2.1 kilobase pairs of the 5'-flanking sequence are sufficient for tissue-specific and hormonal/metabolic regulation of the fatty-acid synthase (FAS) gene in transgenic mice. We also demonstrated that the -65 E-box is required for insulin regulation of the FAS promoter using 3T3-L1 adipocytes in culture. To further define sequences required for FAS gene expression, we generated transgenic mice carrying from -644, -444, -278, and -131 to +67 base pairs of the rat FAS 5'-flanking sequence fused to the chloramphenicol acetyltransferase (CAT) reporter gene. Similar to the expression observed with -2100-FAS-CAT transgenic mice, transgenic mice harboring -644-FAS-CAT and -444-FAS-CAT expressed high levels of CAT mRNA only in lipogenic tissues (liver and adipose tissue) in a manner identical to the endogenous FAS mRNA. In contrast, -278-FAS-CAT and -131-FAS-CAT transgenic mice did not show appreciable CAT expression in any of the tissues examined. When previously fasted mice were refed a high carbohydrate, fat-free diet, CAT mRNA expression in transgenic mice harboring -644-FAS-CAT and -444-FAS-CAT was induced dramatically in liver and adipose tissue. The induction was virtually identical to that observed in -2100-FAS-CAT transgenic mice and to the endogenous FAS mRNA. In contrast, -278-FAS-CAT transgenic mice showed induction by feeding, but at a much lower magnitude in both liver and adipose tissue. The -131-FAS-CAT transgenic mice did not show any CAT expression either when fasted or refed a high carbohydrate diet. To study further the effect of insulin, we made these transgenic mice insulin-deficient by streptozotocin treatment. Insulin administration to the streptozotocin-diabetic mice increased CAT mRNA levels driven by the -644 FAS and -444 FAS promoters in liver and adipose tissue, paralleling the endogenous FAS mRNA levels. In the case of -278-FAS-CAT, the induction observed was at a much lower magnitude, and deletion to -131 base pairs did not show any increase in CAT expression by insulin. This study demonstrates that the sequence requirement for FAS gene regulation employing an in vitro culture system does not reflect the in vivo situation and that two 5'-flanking regions are required for proper nutritional and insulin regulation of the FAS gene. Cotransfection of the upstream stimulatory factor and various FAS promoter-luciferase constructs as well as in vitro binding studies suggest a function for the upstream stimulatory factor at both the -65 and -332 E-box sequences.  相似文献   
107.
Eun LY  Song H  Choi E  Lee TG  Moon DW  Hwang D  Byun KH  Sul JH  Hwang KC 《Tissue & cell》2011,43(4):238-245
Mesenchymal stem cells (MSCs) have been used with success in several clinical applications for clinical treatment of ischemic hearts. However, the reported effects of MSC-based therapy on myocardial infarction (MI) are inconsistent. In particular, the preventive effects of MSC-based therapy on arrhythmic sudden death and metabolic disorders after infarction remain controversial. Here, we investigated the effects of MSCs on reverse remodeling in an infarcted myocardium, and found that MSC-therapy failed to achieve the complete regeneration of infarcted myocardium. Histological analyses showed that although infarct size and interstitial fibrosis induced by MI recovered significantly after MSC treatment, these improvements were marginal, indicating that a significant amount of damaged tissue was still present. Furthermore, transplanted MSCs had slight anti-apoptotic and anti-inflammatory effects in MSC-implanted regions and no significant improvements in cardiac function were observed, suggesting that naïve MSCs might not be the right cell type to treat myocardial infarction. Furthermore, small ion profiling using ToF-SIMS revealed that the metabolic stabilization provided by the MSCs implantation was not significant compared to the sham group. Together, these results indicate that pretreatment of MSCs is needed to enhance the benefits of MSCs, particularly when MSCs are used to treat arrhythmogenicity and metabolically stabilize infarcted myocardium.  相似文献   
108.
109.
110.

Background

Tranilast (N-(3′,4′-dimethoxycinnamonyl) anthranilic acid) has been shown to be therapeutically effective, exerting anti-inflammatory and anti-oxidative effects via acting on macrophage. We hypothesized that Tranilast may protect against oxidative stress-induced bone loss via action in osteoclasts (OCs) that shares precursors with macrophage.

Methodology and Principal Findings

To elucidate the role of Tranilast, ovariectomy (OVX)-induced bone loss in vivo and OC differentiation in vitro were evaluated by µCT and tartrate-resistant acid phosphatase staining, respectively. Oral administration of Tranilast protected against OVX-induced bone loss with decreased serum level of reactive oxygen species (ROS) in mice. Tranilast inhibited OC formation in vitro. Decreased osteoclastogenesis by Tranilast was due to a defect of receptor activator of nuclear factor-κB ligand (RANKL) signaling, at least partly via decreased activation of nuclear factor-κB and reduced induction and nuclear translocation of nuclear factor of activated T cells, cytoplasmic 1 (or NFAT2). Tranilast also decreased RANKL-induced a long lasting ROS level as well as TGF-β to inhibit osteoclastogenesis. Reduced ROS caused by Tranilast was due to the induction of ROS scavenging enzymes (peroxiredoxin 1, heme oxygenase-1, and glutathione peroxidase 1) as well as impaired ROS generation.

Conclusions/Significance

Our data suggests the therapeutic potential of Tranilast for amelioration of bone loss and oxidative stress due to loss of ovarian function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号