首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   475篇
  免费   4篇
  国内免费   1篇
  2015年   4篇
  2014年   2篇
  2013年   16篇
  2012年   16篇
  2011年   18篇
  2010年   33篇
  2009年   28篇
  2008年   18篇
  2007年   27篇
  2006年   25篇
  2005年   16篇
  2004年   12篇
  2003年   10篇
  2002年   10篇
  2001年   4篇
  2000年   7篇
  1999年   6篇
  1998年   16篇
  1997年   12篇
  1996年   13篇
  1995年   11篇
  1994年   12篇
  1993年   11篇
  1992年   11篇
  1991年   9篇
  1990年   8篇
  1989年   16篇
  1988年   8篇
  1987年   8篇
  1986年   7篇
  1985年   10篇
  1984年   5篇
  1983年   6篇
  1982年   9篇
  1981年   5篇
  1980年   5篇
  1979年   5篇
  1978年   3篇
  1977年   7篇
  1976年   3篇
  1974年   3篇
  1973年   2篇
  1972年   5篇
  1971年   6篇
  1970年   3篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1952年   1篇
  1931年   1篇
排序方式: 共有480条查询结果,搜索用时 15 毫秒
111.
Abstract 1. As herbivory often elicits systemic changes in plant traits, indirect interactions via induced plant responses may be a pervasive feature structuring herbivore communities. Although the importance of this phenomenon has been emphasised for herbivorous insects, it is unknown if and how induced responses contribute to the organisation of other major phytoparasitic taxa. 2. Survey and experimental field studies were used to investigate the role of plants in linking the dynamics of foliar‐feeding insects and root‐feeding nematodes on tobacco, Nicotiana tabacum. 3. Plant‐mediated interactions between insects and nematodes could largely be differentiated by insect feeding guild, with positive insect–nematode interactions predominating with leaf‐chewing insects (caterpillars) and negative interactions occurring with sap‐feeding insects (aphids). For example, insect defoliation was positively correlated with the abundance of root‐feeding nematodes, but aphids and nematodes were negatively correlated. Experimental field manipulations of foliar insect and nematode root herbivory also tended to support this outcome. 4. Overall, these results suggest that plants indirectly link the dynamics of divergent consumer taxa in spatially distinct ecosystems. This lends support to the growing perception that plants play a critical role in propagating indirect effects among a diverse assemblage of consumers.  相似文献   
112.
A major goal of landscape genetics is to understand how landscapes structure genetic variation in natural populations. However, landscape genetics still lacks a framework for quantifying the effects of landscape features, such as habitat type, on realized gene flow. Here, we present a methodology for identifying the costs of dispersal through different habitats for the California tiger salamander ( Ambystoma californiense ), an endangered species restricted to grassland/vernal pool habitat mosaics. We sampled larvae from all 16 breeding ponds in a geographically restricted area of vernal pool habitat at the Fort Ord Natural Reserve, Monterey County, California. We estimated between-pond gene flow using 13 polymorphic microsatellite loci and constructed GIS data layers of habitat types in our study area. We then used least-cost path analysis to determine the relative costs of movement through each habitat that best match rates of gene flow measured by our genetic data. We identified four measurable rates of gene flow between pairs of ponds, with between 10.5% and 19.9% of larvae having immigrant ancestry. Although A. californiense is typically associated with breeding ponds in grassland habitat, we found that dispersal through grassland is nearly twice as costly as dispersal through chaparral and that oak woodland is by far the most costly habitat to traverse. With the increasing availability of molecular resources and GIS data, we anticipate that these methods could be applied to a broad range of study systems, particularly those with cryptic life histories that make direct observation of movement challenging.  相似文献   
113.
Lions were the most widespread carnivores in the late Pleistocene, ranging from southern Africa to the southern USA, but little is known about the evolutionary relationships among these Pleistocene populations or the dynamics that led to their extinction. Using ancient DNA techniques, we obtained mitochondrial sequences from 52 individuals sampled across the present and former range of lions. Phylogenetic analysis revealed three distinct clusters: (i) modern lions, Panthera leo ; (ii) extinct Pleistocene cave lions, which formed a homogeneous population extending from Europe across Beringia (Siberia, Alaska and western Canada); and (iii) extinct American lions, which formed a separate population south of the Pleistocene ice sheets. The American lion appears to have become genetically isolated around 340 000 years ago, despite the apparent lack of significant barriers to gene flow with Beringian populations through much of the late Pleistocene. We found potential evidence of a severe population bottleneck in the cave lion during the previous interstadial, sometime after 48 000 years, adding to evidence from bison, mammoths, horses and brown bears that megafaunal populations underwent major genetic alterations throughout the last interstadial, potentially presaging the processes involved in the subsequent end-Pleistocene mass extinctions.  相似文献   
114.
Differences between species in breeding seasons are thought to be mediated through differences in their reproductive physiology. Little is known about how the timing and duration of gonadal maturation varies between raptor species, how the timing of moult relates to the gonadal cycle, whether the timing and degree of sexual maturation varies between juveniles and adults or whether body condition has a significant effect. To address these questions, data on gonadal size and moult for adults and juveniles of both sexes of three raptor species were extracted from the Predatory Bird Monitoring Scheme (based on birds found dead by members of the public). The three species, Sparrowhawk Accipiter nisus, Kestrel Falco tinnunculus and Barn Owl Tyto alba, have different ecologies – diurnal bird predator, diurnal mammal predator and nocturnal mammal predator, respectively. All are single‐brooded but have different breeding seasons. The duration of gonadal maturation was markedly different between the species. Barn Owls showed the earliest maturation and the latest gonad regression, and Sparrowhawks the latest maturation and earliest gonad regression. Kestrels were intermediate. In males of all species, the testes remained fully mature throughout their respective breeding seasons. In females, the ovaries remained partially mature throughout the breeding season. Moult started slightly earlier in Sparrowhawks than in Kestrels and coincided with gonadal regression in the two species. Although females of the two species started to moult earlier than males, moult duration was similar between the sexes. Barn Owls showed no distinct annual pattern of moult. In juveniles of all three species, the gonads were smaller than in adults throughout spring and started to mature later. Gonad size in birds that had starved tended to be smaller than in birds dying from other causes, but did not influence the difference in gonad mass between adults and juveniles and between seasons. Body condition had no effect on moult. Whilst ecology has led to the evolution of different breeding seasons, differences between species, and between adults and juveniles, are mediated through adaptive differences in their reproductive physiology.  相似文献   
115.
The African White-backed Vulture Gyps africanus is widely distributed across sub-Saharan Africa but populations are in decline. Loss of suitable habitat for foraging and breeding are among the most important causes, and future conservation will require identification of suitable remaining habitat and the threats to it and to the vultures in it. Like many large raptors, African White-backed Vultures have a long breeding cycle and thus spend much of each year near their nest site, but ecological correlates of nest sites have not been quantified for any African vulture species. We use nest-site data for African White-backed Vultures collected during aerial and ground surveys and habitat data derived from a GIS to develop statistical models that estimate the probability of nest presence in relation to habitat characteristics, and test these models against an independent dataset. The models predicted that both direct and indirect disturbance by humans limit the potential distribution. Suitable habitat needs to be identified and receive adequate protection from poaching. Poaching of vultures is thought to be mainly for use in traditional medicine and does not target any particular species, so all vulture species can be considered equally at risk. We predict the likelihood of individuals nesting in currently unprotected areas should they become protected. These predictions show that readily available GIS data combined with relatively simple statistical modelling can provide meaningful large-scale predictions of habitat availability.  相似文献   
116.
目的:筛选以体壁穿透方式进入线虫体内而引起宿主致病的杀线虫细菌,为开发新的植物寄生线虫生防战略奠定基础.方法:通过毒性测试和平板法筛选杀线虫细菌,利用显微镜和扫描电镜研究观察细菌对线虫的作用方式和侵染过程.结果:筛选获得的杀线虫细菌菌株W3具有明显的侵染活性.生测结果表明,细菌培养上清液和上清蛋白粗提物对腐生线虫致死率分别达到95%和100%.在平板测试中,测试线虫体壁被严重破坏,在48h内超过80%的线虫被杀死和降解.扫描电镜观察可以明显的看到细菌穿透线虫体壁后在线虫体壁上留下的孔.结论:细菌W3具有显著的杀线虫活性和线虫体壁降解活性,其杀线虫活性物质主要存在于细菌培养上清液中.  相似文献   
117.
1. Shallow lakes and their ectothermic inhabitants are particularly vulnerable to the effects of climatic warming. These impacts are likely to depend on nutrient loading, especially if the combination of warming and eutrophication leads to severe hypoxia. 2. To investigate effects of realistic warming and nutrient loading on a fish species with high tolerance of warming and hypoxia, we observed population changes and timing of reproduction of three‐spined sticklebacks in 24 outdoor shallow freshwater ecosystems with combinations of temperature (ambient and ambient +4 °C) and three nutrient treatments over 16 months. 3. Warming reduced stickleback population biomass by 60% (population size by 76%) and nutrient‐addition reduced biomass by about 80% (population size 95%). Nutrients and warming together resulted in extinction of the stickleback populations. These losses were mainly attributed to the increased likelihood of severe hypoxia in heated and nutrient‐addition mesocosms. 4. Warming of nutrient‐rich waters can thus have dire consequences for freshwater ectotherm populations. The loss even of a hardy fish suggests a precarious future for many less tolerant species in such eutrophic systems under current climate change predictions.  相似文献   
118.
Differences in the survival rates of males and females over the period from hatching to recruitment can have important impacts on individual fitness and population demographics. However, whilst the influence of an individual's sex on nestling growth and survival has been well studied, less is known about sex‐specific survival over the period between fledging and recruitment. Here, we analyse nestling survival and recruitment in an isolated, island population of house sparrows (Passer domesticus), using data collected over a 4‐year period. Nestlings that had a greater mass at 1 day old were more likely to fledge. Recruitment was also positively associated with day 11 mass. The positive influence of nestling mass on survival to fledging also increased as brood size increased. There was no difference in the survival of male and female individuals prior to fledging. In contrast, over the period from fledging to recruitment, females had significantly less mortality than males. Recruitment was also positively associated with 11‐day‐old mass. Neither the nestling sex ratio nor the fledging sex ratio deviated from 0.5, but the sex ratio amongst recruits was female biased. Our study shows that sex can influence juvenile survival, but also shows that its effect varies between different life‐history stages; therefore, these stages should be considered separately if we want to understand at what point sex‐specific differences in juvenile survival occur. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 680–688.  相似文献   
119.
The Australian zebra finch, Taeniopygia guttata, is a widely used model organism, yet few studies have compared domesticated and wild birds with the aim of examining its relevance as an evolutionary model species. Domestic and wild broods hatch over approximately 4 and 2 days, respectively, which is important given that nestlings can fledge after as little as 12 days, although 16–18 days is common. We aimed to evaluate the extent to which the greater hatching asynchrony in domestic stock may effect reproductive success through greater variance in size hierarchies, variance in within‐brood growth rates, and partial brood mortality. Therefore, by simultaneously controlling brood sizes and experimentally manipulating hatching intervals in both domesticated and wild birds, we investigated the consequences of hatching intervals for fledging success and nestling growth patterns, as well as trade‐offs. Fledging success was similarly high in domestic and wild broods of either hatching pattern. Nonetheless, between‐brood analyses revealed that domestic nestlings had significantly higher masses, larger skeletal characters, and longer wings than their wild counterparts, although wild nestlings had comparable wing lengths at the pre‐fledging stage. Moreover, within‐brood analyses revealed only negligible differences between domestic and wild nestlings, and larger effects of hatching order and hatching pattern. Therefore, despite significant differences in the hatching intervals, and the ultimate size achieved by nestlings, the domestication process does not appear to have significantly altered nestling growth trade‐offs. The present study provides reassuring evidence that studies involving domesticated zebra finches, or other domesticated model organisms, may provide reasonable adaptive explanations in behavioural and evolutionary ecology. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 763–773.  相似文献   
120.
The effects of 4 years of simulated nitrogen deposition, as nitrate (NO3?) and ammonium (NH4+), on microbial carbon turnover were studied in an ombrotrophic peatland. We investigated the mineralization of simple forms of carbon using MicroResp? measurements (a multiple substrate induced respiration technique) and the activities of four soil enzymes involved in the decomposition of more complex forms of carbon or in nutrient acquisition: N‐acetyl‐glucosaminidase (NAG), cellobiohydrolase (CBH), acid phosphatase (AP), and phenol oxidase (PO). The potential mineralization of labile forms of carbon was significantly enhanced at the higher N additions, especially with NH4+ amendments, while potential enzyme activities involved in breakdown of more complex forms of carbon or nutrient acquisition decreased slightly (NAG and CBH) or remained unchanged (AP and PO) with N amendments. This study also showed the importance of distinguishing between NO3? and NH4+ amendments, as their impact often differed. It is possible that the limited response on potential extracellular enzyme activity is due to other factors, such as limited exposure to the added N in the deeper soil or continued suboptimal functioning of the enzymes due to the low pH, possibly via the inhibitory effect of low phenol oxidase activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号