首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   1篇
  国内免费   1篇
  158篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   9篇
  2011年   4篇
  2010年   8篇
  2009年   1篇
  2008年   5篇
  2007年   3篇
  2006年   10篇
  2005年   8篇
  2004年   6篇
  2003年   8篇
  2002年   6篇
  2001年   7篇
  2000年   3篇
  1999年   3篇
  1996年   1篇
  1995年   2篇
  1992年   5篇
  1990年   1篇
  1988年   2篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
  1966年   2篇
  1954年   2篇
  1952年   10篇
  1951年   11篇
  1950年   8篇
排序方式: 共有158条查询结果,搜索用时 0 毫秒
11.
A new representative of neutrophilic iron-oxidizing bacteria was isolated from the iron-containing sediments of the brackish low-temperature iron-rich spring of the Staraya Russa Resort (Novgorod region, Russia). The cells of strain Hf1 were thin, slightly curved rods, motile by means of a single polar flagellum. The bacterium reproduced by binary division and was capable of producing rosettes. Optimal growth was observed within the pH range of 6.2–8.5 (with an optimum at 7.5), at 9–38°C (with an optimum at 30°C), and in the salinity range of 0.1–8.5% NaCl (with an optimum at 1%). The organism was a facultative anaerobe. The strain was capable of mixotrophic and organoheterotrophic growth. Fe(II) oxidation occurred under anaerobic conditions via reduction of NO3 and N2O, or under microaerobic conditions with oxygen as an electron acceptor. According to phylogenetic analysis based on the comparison of the 16S rRNA gene sequences, the strain was closest to the organotrophic marine bacterium Hoeflea phototrophica (98.5% similarity). The level of DNA-DNA homology with the type species of the genus Hoeflea was 19%. The DNA G + C base content was 57.5 mol %. According to its phenotypic and chemotaxonomic properties, as well as to the results of phylogenetic analysis, strain Hf1 was classified into the genus Hoeflea of the family Phyllobacteriaceae, order Rhizobiales of the phylum Alphaproteobacteria as a novel species, Hoeflea siderophila sp. nov. The type strain is Hf1T (=DSM 21587 = VKM A7094). The GenBank accession number for the 16S rRNA gene sequences of strain Hf1T is EU670237.  相似文献   
12.
Comprehensive investigation combining molecular genetic techniques and comparative studies of morphological and physiological properties made it possible to resolve the disputed issue of the taxonomic status of the groups ??T. nivea?? and ??Eikelboom type 021N?? of the genus Thiothrix. The phylogenetic trees constructed on the basis of 16S rRNA and gyrB gene sequences demonstrated that members of the genus Thiothrix formed a cluster within the order Thiotrichales. According to the ??ribosomal?? tree, the cluster of the genus Thiothrix was divided into two main groups, I and II, corresponding to the groups ??T. nivea?? and ??Eikelboom type 021N??. The levels of similarity between the 16S rRNA gene sequences of Thiothrix species reached 88.9?C100%. On the contrary, in the ??gyrase?? tree, these species were not divided into ??T. nivea?? and ??Eikelboom type 021N?? groups. The levels of similarity between the amino acid sequences of the gyrB gene fragments of Thiothrix species varied from 74.5 to 99.2%. Importantly, members of the groups ??T. nivea?? and ??Eikelboom type 021N?? formed very similar 16S rRNA secondary structures in the variable region V3, where a 30-nucleotide deletion characteristic of all Thiothrix species was detected. Phenotypic analysis of the studied bacteria revealed some morphological and physiological properties shared by the groups ??T. nivea?? and ??Eikelboom type 021N??. The data obtained indicate that members of the groups ??T. nivea?? and ??Eikelboom type 021N?? are phenotypically and genetically heterogeneous species within the single monophyletic genus Thiothrix..  相似文献   
13.
The functional role of tetrameric and dimeric isoforms of malate dehydrogenase in the carbon metabolism of the colorless sulfur bacterium Beggiatoa leptomitiformis, strain D-402, was studied. This strain can grow both lithotrophically and organotrophically. By use of inhibition analysis, the tetrameric isoenzyme was shown to operate in the glyoxylate cycle and the dimeric form was found to be involved in the TCA cycle. The dynamics of the dimeric isoenzyme conversion to the tetrameric isoform was found to be determined by the rate of thiosulfate oxidation. The regulation of the carbon metabolism in Beggiatoa leptomitiformis is supposed to be accomplished by means of structural and functional changes in the protein molecule of malate dehydrogenase.  相似文献   
14.
Tomato (Lycopersicon esculentum L., cv. Sibirskii skorospelyi) and cucumber (Cucumis sativus L., cv. Konkurent) plants were grown in a soil culture in a greenhouse at an average daily temperature of 20°C and ambient illumination until the development of five and eight true leaves, respectively. During the subsequent three days, some plants were kept in a climatic chamber at 6°C in the light, whereas other plants remained in a greenhouse (control). The cold-resistance of cucumber leaves and roots, as assayed from the electrolyte leakage, was reduced after cold exposure stronger than cold-resistance of tomato organs. The ratio photosynthesis/dark respiration was lower in cucumber than in tomato leaves at all measurement temperatures. The concentrations of sugars (sucrose + glucose + fructose) increased in chilled tomato roots but decreased in cucumber roots. Cold exposure changed the activities of various invertase forms (soluble and insoluble acidic and alkaline invertases). The total invertase activity and the ratio of mono- to disaccharides increased. The lower cucumber cold-resistance is related to the higher sensitivity of its photosynthetic apparatus to chilling and, as a consequence, insufficient root supply with sugars.  相似文献   
15.
16.
17.
18.
19.
The metabolic pathways of one-carbon compounds utilized by colorless sulfur bacterium Beggiatoa leptomitoformis D-402 were revealed based on comprehensive analysis of its genomic organization, together with physiological, biochemical and molecular biological approaches. Strain D-402 was capable of aerobic methylotrophic growth with methanol as a sole source of carbon and energy and was not capable of methanotrophic growth because of the absence of genes of methane monooxygenases. It was established that methanol can be oxidized to CO2 in three consecutive stages. On the first stage methanol was oxidized to formaldehyde by the two PQQ (pyrroloquinolinequinone)-dependent methanol dehydrogenases (MDH): XoxF and Mdh2. Formaldehyde was further oxidized to formate via the tetrahydromethanopterin (H4MPT) pathway. And on the third stage formate was converted to CO2 by NAD+-dependent formate dehydrogenase Fdh2. Finally, it was established that endogenous CO2, formed as a result of methanol oxidation, was subsequently assimilated for anabolism through the Calvin–Benson–Bassham cycle. The similar way of one-carbon compounds utilization also exists in representatives of another freshwater Beggiatoa species—B. alba.  相似文献   
20.
Six strains of sulfur-oxidizing bacteria of the known organotrophic species Sphaerotilus natans were isolated from two North Caucasian sulfide springs. Similar to known colorless sulfur bacteria, all the strains accumulated elemental sulfur when grown in media with sulfide. Unlike previously isolated S. natans strains, new isolates had higher temperature growth optimum (33–37°C) and variable metabolism. All the strains were capable of organotrophic, lithoheterotrophic, and mixotrophic growth with sulfur compounds as electron donors for energy metabolism. Variable metabolism of new Sphaerotilus isolates is a highly important adaptation mechanism which facilitates extension of their geographic range and supports their mass development in new habitats, e.g. sulfide springs. Within the cluster of new isolates, the physiological heterogeneity was shown to result from the inducible nature of the enzymes of oxidative sulfur metabolism and from their resistance to aerobic cultivation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号