首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4234篇
  免费   392篇
  国内免费   194篇
  2023年   31篇
  2022年   71篇
  2021年   128篇
  2020年   109篇
  2019年   123篇
  2018年   174篇
  2017年   122篇
  2016年   179篇
  2015年   273篇
  2014年   315篇
  2013年   296篇
  2012年   427篇
  2011年   340篇
  2010年   249篇
  2009年   209篇
  2008年   253篇
  2007年   232篇
  2006年   230篇
  2005年   192篇
  2004年   167篇
  2003年   152篇
  2002年   120篇
  2001年   64篇
  2000年   46篇
  1999年   47篇
  1998年   21篇
  1997年   21篇
  1996年   19篇
  1995年   19篇
  1994年   16篇
  1993年   10篇
  1992年   15篇
  1991年   15篇
  1990年   14篇
  1989年   10篇
  1988年   12篇
  1987年   9篇
  1986年   10篇
  1985年   12篇
  1984年   5篇
  1983年   4篇
  1982年   7篇
  1981年   6篇
  1980年   7篇
  1979年   6篇
  1976年   5篇
  1973年   4篇
  1971年   5篇
  1967年   2篇
  1966年   3篇
排序方式: 共有4820条查询结果,搜索用时 46 毫秒
121.
Phenyl‐2‐pyridyl ketoxime (PPKO) was found to be one of the small molecules enriched in the extracellular matrix of near‐senescent human diploid fibroblasts (HDFs). Treatment of young HDFs with PPKO reduced the viability of young HDFs in a dose‐ and time‐dependent manner and resulted in senescence‐associated β‐galactosidase (SA‐β‐gal) staining and G2/M cell cycle arrest. In addition, the levels of some senescence‐associated proteins, such as phosphorylated ERK1/2, caveolin‐1, p53, p16ink4a, and p21waf1, were elevated in PPKO‐treated cells. To monitor the effect of PPKO on cell stress responses, reactive oxygen species (ROS) production was examined by flow cytometry. After PPKO treatment, ROS levels transiently increased at 30 min but then returned to baseline at 60 min. The levels of some antioxidant enzymes, such as catalase, peroxiredoxin II and glutathione peroxidase I, were transiently induced by PPKO treatment. SOD II levels increased gradually, whereas the SOD I and III levels were biphasic during the experimental periods after PPKO treatment. Cellular senescence induced by PPKO was suppressed by chemical antioxidants, such as N‐acetylcysteine, 2,2,6,6‐tetramethylpiperidinyloxy, and L‐buthionine‐(S,R)‐sulfoximine. Furthermore, PPKO increased nitric oxide (NO) production via inducible NO synthase (iNOS) in HDFs. In the presence of NOS inhibitors, such as L‐NG‐nitroarginine methyl ester and L‐NG‐monomethylarginine, PPKO‐induced transient NO production and SA‐β‐gal staining were abrogated. Taken together, these results suggest that PPKO induces cellular senescence in association with transient ROS and NO production and the subsequent induction of senescence‐associated proteins .  相似文献   
122.
A total of 490 eight-week-old female Hybrid Converter turkeys (body weight 4.11 ± 0.03 kg) were divided into 5 groups with 7 replicates of 14 birds each. For 8 weeks, basal diets were supplemented with methionine (Met) at following levels (weeks 9–12/weeks 13–16 of age): Group 1 – 0.34/0.29%, Group 2 – 0.39/0.34%, Groups 3 and 4 – 0.45/0.38% and 0.51/0.41%, respectively, Group 5 – 0.58/0.47%. Only in the first feeding phase the body weight gain (BWG) was affected by Met levels with the significantly highest BWG in Group 3. No treatment effects were found for feed conversion ratio, carcass yield, carcass composition and meat colour. The blood superoxide dismutase activity was significantly highest in Groups 2 and 3. The concentrations of reduced glutathione in the liver were linearly increased (p = 0.018), whereas the ratio of reduced glutathione to oxidised glutathione was highest in Group 3 (quadratic contrast, p = 0.004). It can be concluded that turkeys from Group 3 (Met levels age depending 15% and 10% above recommendations by NRC) were characterised by a well-balanced physiological response. Attention should be paid to the immune response of birds to higher dietary Met levels: plasma IgA concentrations decreased, whereas IL-6 and TNF-α levels increased in turkeys fed diets with the highest Met content.  相似文献   
123.
Prognostic significance of cytochrome P450 2C19*2 polymorphism in acute myocardial infarction is still not well investigated. The aim of the study was to determine the relationship between the genetic polymorphism and the outcome of the acute myocardial infarction patients, and to further clarify the impact of smoking on such relationship. Six hundred acute myocardial infarction patients were enrolled. All of them provided blood samples and underwent clopidogrel treatment. The genetic polymorphism was determined by polymerase chain reaction–restriction fragment length polymorphism analysis, and the platelet function was assessed using conventional aggregometry. Of the included patients, 287 carried GG wild‐type genotypes, 225 carried GA genotypes and 88 carried AA genotypes. The platelet aggregation rate was significantly elevated in the AA genotype patients, mainly in the non‐smoking patients (P < 0.001) and the former‐smoking patients (P < 0.001). During 5‐year follow‐up period, after adjusted for multiple confounding factors, AA genotypes were associated with the increase in 5‐year mortalities in the non‐smoking patients [OR: 7.06, 95% confidence interval (CI): 2.16–11.49] and the former‐smoking patients (OR: 4.38, 95% CI: 1.05–9.40), but not in the current‐smoking patients (OR: 1.12, 95% CI: 0.60–2.31). In conclusion, the study suggested a potential role of P450 2C19*2 polymorphism as a prognostic indicator in acute myocardial infarction patients. We had also obtained some evidence that current smoking might weaken the prognostic significance of the genetic polymorphism in patients.  相似文献   
124.

Introduction

Although smoking is a major risk factor for pharyngolaryngeal cancer, most smokers do not develop pharyngolaryngeal cancer.

Objectives

In the prospective Korean Cancer Prevention Study-II (KCPS-II), we investigated the application of metabolomics to differentiate smokers with incident pharyngolaryngeal cancer (pharyngolaryngeal cancer group) from smokers who remained free from cancer (controls) during a mean follow-up period of 7 years and aimed to discover valuable early biomarkers of pharyngolaryngeal cancer.

Methods

We used baseline serum samples from 30 smoking men with incident pharyngolaryngeal cancer and 59 age-matched cancer-free smoking men. Metabolic alterations associated with the incidence of pharyngolaryngeal cancer were investigated by performing metabolomics on baseline serum samples using ultra-performance liquid chromatography-linear-trap quadrupole-Orbitrap mass spectrometry.

Results

Compared to the control group, the pharyngolaryngeal cancer group showed significantly higher oxidized LDL levels. Seventeen metabolites were differentially abundant between the two groups. At baseline, compared to controls, smokers with incident pharyngolaryngeal cancer during follow-up showed significantly higher levels of pyroglutamic acid (glutathione metabolism) but lower levels of lysophosphatidylcholines (lysoPCs) C14:0, C15:0, C16:0, C17:0, C18:0, and C20:5; glycerophosphocholine; PC C36:5; lysoPEs C16:0, C20:1, and C22:0 (glycerophospholipid metabolism); SM (d18:0/16:1); and SM (d18:1/18:1) (sphingomyelin metabolism). Furthermore, smokers with incident pharyngolaryngeal cancer showed significantly higher levels of oleamide and lower levels of tryptophan and linoleyl carnitine at baseline than cancer-free smokers.

Conclusion

This prospective study showed the clinical relevance of dysregulated metabolism of glutathione, glycerophospholipids and sphingolipids to the pathogenesis of pharyngolaryngeal cancer among smokers. These data suggest that the dysregulation of these metabolic processes may be a key mechanism underlying pharyngolaryngeal cancer progression and development.
  相似文献   
125.
126.
To understand the olfactory mechanisms of Holotrichia parallela antennae in detecting volatile compounds in the environment, protein profiles of H. parallela antennae were analyzed using two‐dimensional electrophoresis followed by mass spectrometry and bioinformatics analyses. Approximately 1,100 protein spots in silver staining gel were detected. Quantitative image analysis revealed that in total 47 protein spots showed significant changes in different genders of adult antennae. Thirty‐five differentially expressed proteins were identified by Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI‐TOF/TOF) tandem mass spectrometer, among which 65.7% are involved in carbohydrate and energy metabolism, antioxidant system, transport, and amino acid/nucleotide metabolism. Some proteins identified here have not been reported previously in insect antennae. Identified male‐biased proteins included odorant‐binding protein 4, pheromone‐binding protein‐related protein 2, odorant‐binding protein 14, prophenoloxidase‐I, acyl‐CoA dehydrogenase, aldo‐keto reductase‐like, carbamoyl phosphate synthetase, etc. whereas some proteins are female biased, such as antennae‐rich cytochrome P450, aldehyde dehydrogenase, and putative glutamine synthetase. Alterations in the levels of some proteins were further confirmed by real time polymerase chain reaction (RT‐PCR). The proteomic resources displayed here are valuable for the discovery of proteins from H. parallela antennae.  相似文献   
127.
128.
129.
130.
Obesity is associated with significant microvascular complications including renal injuries and may induce end‐stage renal disease. Emerging studies have demonstrated microRNAs (miRNAs) are potential mediators in the pathophysiological process of nephropathy. The present study aimed to investigate the role of miR‐802 in obesity‐related nephropathy and potential molecular mechanisms. Through utilizing obese mouse model and human subjects, we explored the therapeutic benefits and clinical application of miR‐802 in protecting against nephropathy. Renal miR‐802 level was positively correlated with functional parameters, including blood urea nitrogen and creatinine in obese mice. Specific silencing of renal miR‐802 improved high fat diet (HFD)‐induced renal dysfunction, structural disorders and fibrosis. The up‐regulated inflammatory response and infiltrated macrophages were also significantly decreased in miR‐802 inhibitor‐treated obese mice. Mechanistically, miR‐802 directly bond to 3?‐UTR of NF‐κB‐repressing factor (NRF) and suppressed its expression. In clinical study, the circulating miR‐802 level was significantly increased in obese subjects, and positively correlated with plasma creatinine level but negatively correlated with creatinine clearance. Taken together, our findings provided evidence that miR‐802/NRF signalling was an important pathway in mediating obesity‐related nephropathy. It is a possible useful clinical approach of treating miR‐802 inhibitor to combat nephropathy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号