首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7848篇
  免费   658篇
  国内免费   6篇
  8512篇
  2023年   28篇
  2022年   81篇
  2021年   123篇
  2020年   63篇
  2019年   109篇
  2018年   153篇
  2017年   113篇
  2016年   237篇
  2015年   363篇
  2014年   424篇
  2013年   436篇
  2012年   551篇
  2011年   559篇
  2010年   348篇
  2009年   328篇
  2008年   450篇
  2007年   433篇
  2006年   393篇
  2005年   396篇
  2004年   399篇
  2003年   349篇
  2002年   313篇
  2001年   303篇
  2000年   242篇
  1999年   214篇
  1998年   76篇
  1997年   79篇
  1996年   58篇
  1995年   57篇
  1994年   37篇
  1993年   27篇
  1992年   77篇
  1991年   83篇
  1990年   50篇
  1989年   54篇
  1988年   46篇
  1987年   44篇
  1986年   32篇
  1985年   35篇
  1984年   33篇
  1982年   20篇
  1981年   17篇
  1979年   19篇
  1978年   22篇
  1977年   23篇
  1976年   24篇
  1974年   24篇
  1973年   19篇
  1971年   20篇
  1970年   17篇
排序方式: 共有8512条查询结果,搜索用时 15 毫秒
971.
Type C-4 strain of Trichoderma harzianum was isolated as a microorganism with high cellulolytic activity. Beta-glucosidase is involved in the last step of cellulose saccharification by degrading cellobiose to glucose, and plays an important role in the cellulase enzyme system with a synergic action with endoglucanase and cellobiohydrolase for cellulose degradation. Beta-glucosidase from T. harzianum type C-4 was purified to homogeneity through Sephacryl S-300, DEAE-Sephadex A-50, and Mono P column chromatographies. It was a single polypeptide with the molecular mass of 75,000 by SDS-PAGE. The enzyme was very active at pH 5.0 and 45 degrees C. No significant inhibition was observed in the presence of metal ions, thiol reagents, or EDTA. The enzyme was stable in the presence of 5% ox gall and digestive enzymes. p-Nitrophenyl-beta-D-cellobioside worked as a substrate for the enzyme as much as p-nitrophenyl-beta-glucopyranoside. Glucose and gluconolactone showed competitive inhibition with a Ki of 1 mM and 1.8 microM, respectively, while galactose, mannose, and xylose did not inhibit the enzyme significantly.  相似文献   
972.
973.
A bacterial consortium capable of degrading the fumigant 1,3-D ((Z)- and (E)-1,3-dichloropropene) was enriched from an enhanced soil. This mixedculture degraded (Z)- and (E)-1,3-D only in the presence of a suitable biodegradable organic substrate, such as tryptone, tryptophan, or alanine. After 8 months of subculturing at 2- to 3-week intervals, a strain of Rhodococcus sp. (AS2C) that was capable of degrading 1,3-D cometabolically in the presenceof a suitable second substrate was isolated. (Z)-3-chloroallyl alcohol (3-CAA) and (Z)-3-chloroacrylic acid (3-CAAC), and (E)-3-CAA and (E)-3-CAAC were the metabolites of (Z)- and (E)-1,3-D, respectively. (E)-1,3-D was degraded faster than (Z)-1,3-D by the strain AS2C and the consortium. AS2C also degraded (E)-3-CAA faster than (Z)-3-CAA. Isomerization of (E)-1,3-D to (Z)-1,3-D orthe (Z) form to the (E) form did not occur.  相似文献   
974.
The cyp19 encodes P450 aromatase, the enzyme catalyzing the conversion of estrogens from androgens. Estrogens affect the dimorphic, anatomical, functional and behavioral aspects of development of both males and females. In zebrafish, two cyp19 genes, cyp19a and cyp19b were found. They are expressed in ovary and brain, respectively. Expression of cyp19b can be detected by 11 days post-fertilization (dpf) by in situ hybridization in the olfactory bulbs, ventral telencephalic region and the hypothalamus of the brain in both male and female, where it is generally known to be affecting the reproductive function and sexual behavior. COS-1 clones permanently expressing the enzymes have been isolated. Both aromatase enzymes encoded by these two genes are functional in COS-1 cells and they can use androstenedione and testosterone equally efficiently. The presence of two functional cyp19 in zebrafish has its evolutionary and physiological importance.  相似文献   
975.
976.
977.
A ligand affinity matrix has been developed and utilized to purify the dopamine D2 receptor approx. 2100 fold from bovine striatal membranes. 3-[2-Aminoethyl]-8-[3-(4-fluorobenzoyl)propyl]-4-oxo-1-phenyl-1,3,8- triazaspiro[4.5]decan-4-one (AES) was synthesized and used to prepare the affinity matrix by coupling to epoxy-activated Sepharose 6B (AES-Sepharose). AES (Ki approximately 1.7 nM) is similar in potency to the parent compound, spiperone (Ki approximately 0.8 nM), in competing for [3H]spiperone-binding activity. AES has no significant potency in competing for the dopamine D1 receptor as assessed by competition for [3H]SCH23390 binding (Ki greater than 1 microM). Covalent photoaffinity labeling of the dopamine D2 receptor in bovine striatal membranes with N-(p-azido-m-[125I]iodophenethyl)spiperone [( 125I]N3-NAPS) was prevented by AES at nanomolar concentrations. The dopamine D2 receptor was solubilized from bovine striatal membranes using 0.25% cholate in the presence of high ionic strength, followed by precipitation and subsequent treatment with 0.5% digitonin. Nearly 100% of the [3H]spiperone-binding activity in the cholate-digitonin solubilized preparation was absorbed at a receptor-to-resin ratio of 2:1 (v/v). Dopamine D2 receptor was eluted from the affinity resin using a competing dopaminergic antagonist molecule, haloperidol. Recovery of dopamine D2 receptor activity from the affinity matrix was approx. 9% of the activity adsorbed to the resin. The [3H]spiperone-binding activity in AES-Sepharose affinity purified preparations is saturable and of high affinity (0.2 nM). Affinity-purified preparations maintain the ligand-binding characteristics of a dopamine D2 receptor as assessed by agonist and antagonist competition for [3H]spiperone binding.  相似文献   
978.
ComGC is a cell surface-localized protein required for DNA binding during transformation in Bacillus subtilis. It resembles type IV prepilins in its N-terminal domain, particularly in the amino acid sequence surrounding the processing cleavage sites of these proteins. ComC is another protein required for DNA binding, which resembles the processing proteases that cleave type IV prepilins. We show here that ComGC is processed in competent cells and that this processing requires ComC. We also demonstrate that the PilD protein of Neisseria gonorrhoeae, a ComC homologue, can process ComGC in Escherichia coli, and that the ComC protein itself is the only B. subtilis protein needed to accomplish cleavage of ComGC in the latter organism. Based on NaOH-solubility studies, we have shown that in the absence of ComC, but in the presence of all other competence proteins, B. subtilis is incapable of correctly translocating ComGC to the outer face of the cell membrane. Finally, we show that ComGC can be cross-linked to yield a form with higher molecular mass, possibly a dimer, and present evidence suggesting that formation of the higher mass complex takes place in the membrane, prior to translocation. Formation of this complex does not require ComC or any of the comG products, other than ComGC itself.  相似文献   
979.
A surface plasmon resonance imaging-based Ni2+-iminodiacetic acid-coated gold chip system was developed to enable specific detection of a hexahistidine-tagged recombinant protein in crude extracts or in column chromatography fractions. This system is especially advantageous for high-throughput analysis of multiple proteins.  相似文献   
980.
A novel gene, sps2, detected in mouse embryo at the early stages of development has been identified as an analog of the E. coli selenophosphate synthetase gene. Unlike the E. coli enzyme, the presence of selenocysteine in the mouse enzyme is indicated by a TGA codon in the open reading frame of the cDNA. Using an N-FLAG monoclonal antibody, it was shown that the full length N-FLAG-sps2 gene product was expressed in COS-7 cells. To investigate the biological activity of the sps2 gene product in vivo, the mutated sps2 gene, which contains cysteine in the place of the TGA encoded selenocysteine in the wild type, was expressed in the E. coli selD deficient mutant, MB08. Like the E. coli wild type selD gene, the mutant sps2 gene complemented the selD mutation. However, replacement of Cys with either Ala, Ser, or Thr resulted in a loss of ability to complement the selD mutation. The SPS2-CYS protein expressed in E. coli was purified and its catalytic activity was determined. The Km value for ATP was 0.75 mM and Vmax was 9.23 nmole/min/mg protein. These results confirm that the mouse embryonic sps2 gene encodes an eukaryotic selenophosphate synthetase, and that availability of selenophosphate as a selenium donor compound is widespread.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号