首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5937篇
  免费   414篇
  国内免费   3篇
  6354篇
  2024年   7篇
  2023年   18篇
  2022年   69篇
  2021年   118篇
  2020年   76篇
  2019年   105篇
  2018年   169篇
  2017年   140篇
  2016年   214篇
  2015年   334篇
  2014年   402篇
  2013年   448篇
  2012年   518篇
  2011年   500篇
  2010年   349篇
  2009年   292篇
  2008年   375篇
  2007年   366篇
  2006年   308篇
  2005年   283篇
  2004年   296篇
  2003年   224篇
  2002年   209篇
  2001年   125篇
  2000年   80篇
  1999年   72篇
  1998年   29篇
  1997年   29篇
  1996年   18篇
  1995年   16篇
  1994年   10篇
  1993年   15篇
  1992年   22篇
  1991年   23篇
  1990年   23篇
  1989年   17篇
  1988年   7篇
  1987年   7篇
  1986年   4篇
  1985年   8篇
  1982年   2篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1966年   1篇
  1962年   1篇
排序方式: 共有6354条查询结果,搜索用时 15 毫秒
101.
Ha H  Kim MS  Park J  Huh JY  Huh KH  Ahn HJ  Kim YS 《Life sciences》2006,79(16):1561-1567
Mesangial cell (MC) proliferation and extracellular matrix (ECM) accumulation are major pathologic features of chronic renal disease including chronic allograft nephropathy (CAN). Mycophenolic acid (MPA), a potent immunosuppressant, has emerged as a treatment to prevent CAN because it inhibits MC proliferation and ECM synthesis, but the mechanism involved has not been clarified. The present study examined relative role of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (p38 MAPK) activation in inhibitory effect of MPA on MC activation. Growth arrested and synchronized primary rat MC (passages 7-11) were stimulated by PDGF 10 ng/ml in the presence and absence of clinically attainable dose of MPA (0-10 microM). Cell proliferation was assessed by [(3)H]thymidine incorporation, fibronectin and the activation of ERK and p38 MAPK by Western blot analysis, and total collagen by [(3)H]proline incorporation. PDGF increased cell proliferation by 4.6-fold, fibronectin secretion by 3.2-fold, total collagen synthesis by 1.8-fold, and the activation of ERK and 38 MAPK by 5.6-fold and 3.1-fold, respectively, compared to control. MPA, at doses inhibiting PDGF-induced MC proliferation and ECM synthesis, effectively blocked p38 MAPK activation but reduced ERK activation by 23% at maximal concentration tested (10 microM). Exogenous guanosine partially reversed the inhibition of MPA on p38 MAPK activation. Inhibitor of ERK or p38 MAPK suppressed PDGF-induced MC proliferation and ECM synthesis. In conclusion, MPA inhibits p38 MAPK activation leading to inhibiting proliferation and ECM synthesis in MC. Guanosine reduction is partially responsible for inhibitory effect of MPA on p38 MAPK activation in MC.  相似文献   
102.
Lee W  Kim KR  Singaravelu G  Park BJ  Kim DH  Ahnn J  Yoo YJ 《Proteomics》2006,6(4):1329-1339
Proper folding and maintenance of the native structure are central to protein function and are assisted by a family of proteins called chaperones. Calreticulin and calnexin are ER resident chaperones well conserved from worm to human. Calreticulin/calnexin knock-out mice exhibit a severe phenotype, whereas in Caenorhabditis elegans, calreticulin [crt-1(jh101)]- and calnexin [cnx-1(nr2009)]-null mutant worms exhibit only a mild phenotype, suggesting the possible existence of alternative chaperone machinery that can compensate for the deficiency of calreticulin and/or calnexin. In order to rapidly identify the compensatory chaperone components involved in this process, we analyzed the proteome of crt-1(jh101) mutants and [crt-1(jh101);cnx-1(nr2009)] double mutants. When grown at 20 degrees C, we found that five proteins were up-regulated and two proteins were down-regulated in crt-1(jh101) mutants; nine proteins were up-regulated and five proteins were down-regulated in [crt-1(jh101);cnx-1(nr2009)] double mutants. In addition, elevation of the cultivation temperature to 25 degrees C, which is still permissive to growth but causes specific defects in mutants, led to the identification of several additional proteins. Interestingly, the consistent increment of heat shock protein-70 family members (hsp70) together with protein disulfide isomerase (PDI) at all the examined conditions suggests the possible compensatory function imparted by hsp70 and PDI family members in the absence of calreticulin and/or calnexin.  相似文献   
103.
Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells via a membrane fusion reaction triggered by acidic pH in the endocytic pathway. Fusion is mediated by the spike protein E1 subunit, an integral membrane protein that contains the viral fusion peptide and forms a stable homotrimer during fusion. We have characterized four monoclonal antibodies (MAbs) specific for the acid conformation of E1. These MAbs did not inhibit fusion, suggesting that they bind to an E1 region different from the fusion peptide. Competition analyses demonstrated that all four MAbs bound to spatially related sites on acid-treated virions or isolated spike proteins. To map the binding site, we selected for virus mutants resistant to one of the MAbs, E1a-1. One virus isolate, SFV 4-2, showed reduced binding of three acid-specific MAbs including E1a-1, while its binding of one acid-specific MAb as well as non-acid-specific MAbs to E1 and E2 was unchanged. The SFV 4-2 mutant was fully infectious, formed the E1 homotrimer, and had the wild-type pH dependence of infection. Sequence analysis demonstrated that the relevant mutation in SFV 4-2 was a change of E1 glycine 157 to arginine (G157R). Decreased binding of MAb E1a-1 was observed under a wide range of assay conditions, strongly suggesting that the E1 G157R mutation directly affects the MAb binding site. These data thus localize an E1 region that is normally hidden in the neutral pH structure and becomes exposed as part of the reorganization of the spike protein to its fusion-active conformation.  相似文献   
104.
105.
The introduction of antigen retrieval (AR) techniques has dramatically improved the sensitivity of immunohistochemical detection of various antigens in formalin-fixed, paraffin-embedded tissues. The microwave-heating and pressure-cooking procedures are the most effective AR methods reported to date. Although extensive efforts have been made to optimize AR procedures using these two methods, previous studies have not led to a standard protocol applicable to all antibodies derived from different clones. In this study we have investigated the optimal AR buffer conditions for 29 antibodies that are in common use for diagnostic purposes in hospitals worldwide. Borate (pH 8.0) and Tris buffer (pH 9.5) yielded the highest retrieved antigen immunoreactivity against most antibodies as compared to other buffers tested. In addition, the microwave pressure-cooking gave better results than microwave-heating alone. Therefore, borate (pH 8.0) or Tris (pH 9.5) buffer used in conjunction with the pressure-cooking procedure is strongly recommended for standard routine use.  相似文献   
106.
The ABC transporter (TliDEF) from Pseudomonas fluorescens SIK W1, which mediated the secretion of a thermostable lipase (TliA) into the extracellular space in Escherichia coli, was engineered using directed evolution (error-prone PCR) to improve its secretion efficiency. TliD mutants with increased secretion efficiency were identified by coexpressing the mutated tliD library with the wild-type tliA lipase in E. coli and by screening the library with a tributyrin-emulsified indicator plate assay and a microtiter plate-based assay. Four selected mutants from one round of error-prone PCR mutagenesis, T6, T8, T24, and T35, showed 3.2-, 2.6-, 2.9-, and 3.0-fold increases in the level of secretion of TliA lipase, respectively, but had almost the same level of expression of TliD in the membrane as the strain with the wild-type TliDEF transporter. These results indicated that the improved secretion of TliA lipase was mediated by the transporter mutations. Each mutant had a single amino acid change in the predicted cytoplasmic regions in the membrane domain of TliD, implying that the corresponding region of TliD was important for the improved and successful secretion of the target protein. We therefore concluded that the efficiency of secretion of a heterologous protein in E. coli can be enhanced by in vitro engineering of the ABC transporter.  相似文献   
107.
108.
Plants protect themselves from excess absorbed light energy through thermal dissipation, which is measured as nonphotochemical quenching of chlorophyll fluorescence (NPQ). The major component of NPQ, qE, is induced by high transthylakoid ΔpH in excess light and depends on the xanthophyll cycle, in which violaxanthin and antheraxanthin are deepoxidized to form zeaxanthin. To investigate the xanthophyll dependence of qE, we identified suppressor of zeaxanthin-less1 (szl1) as a suppressor of the Arabidopsis thaliana npq1 mutant, which lacks zeaxanthin. szl1 npq1 plants have a partially restored qE but lack zeaxanthin and have low levels of violaxanthin, antheraxanthin, and neoxanthin. However, they accumulate more lutein and α-carotene than the wild type. szl1 contains a point mutation in the lycopene β-cyclase (LCYB) gene. Based on the pigment analysis, LCYB appears to be the major lycopene β-cyclase and is not involved in neoxanthin synthesis. The Lhcb4 (CP29) and Lhcb5 (CP26) protein levels are reduced by 50% in szl1 npq1 relative to the wild type, whereas other Lhcb proteins are present at wild-type levels. Analysis of carotenoid radical cation formation and leaf absorbance changes strongly suggest that the higher amount of lutein substitutes for zeaxanthin in qE, implying a direct role in qE, as well as a mechanism that is weakly sensitive to carotenoid structural properties.  相似文献   
109.

Background

Polo-like kinase-1 (Plk1) plays a crucial role in cell proliferation and the inhibition of Plk1 has been considered as a potential target for specific inhibitory drugs in anti-cancer therapy. Several research groups have identified peptide-based inhibitors that target the polo-box domain (PBD) of Plk1 and bind to the protein with high affinity in in vitro assays. However, inadequate proteolytic resistance and cell permeability of the peptides hinder the development of these peptide-based inhibitors into novel therapeutic compounds.

Methodology/Principal Findings

In order to overcome the shortcomings of peptide-based inhibitors, we designed and synthesized small molecule inhibitors. Among these molecules, bg-34 exhibited a high binding affinity for Plk1-PBD and it could cross the cell membrane in its unmodified form. Furthermore, bg-34-dependent inhibition of Plk1-PBD was sufficient for inducing apoptosis in HeLa cells. Moreover, modeling studies performed on Plk1-PBD in complex with bg-34 revealed that bg-34 can interact effectively with Plk1-PBD.

Conclusion/Significance

We demonstrated that the molecule bg-34 is a potential drug candidate that exhibits anti-Plk1-PBD activity and possesses the favorable characteristics of high cell permeability and stability. We also determined that bg-34 induced apoptotic cell death by inhibiting Plk1-PBD in HeLa cells at the same concentration as PEGylated 4j peptide, which can inhibit Plk1-PBD activity 1000 times more effectively than bg-34 can in in vitro assays. This study may help to design and develop drug-like small molecule as Plk1-PBD inhibitor for better therapeutic activity.  相似文献   
110.
Nicotinamide adenine dinucleotide (NAD+) synthetase catalyzes the last step in NAD+ biosynthesis. Depletion of NAD+ is bactericidal for both active and dormant Mycobacterium tuberculosis (Mtb). By inhibiting NAD+ synthetase (NadE) from Mtb, we expect to eliminate NAD+ production which will result in cell death in both growing and nonreplicating Mtb. NadE inhibitors have been investigated against various pathogens, but few have been tested against Mtb. Here, we report on the expansion of a series of urea-sulfonamides, previously reported by Brouillette et al. Guided by docking studies, substituents on a terminal phenyl ring were varied to understand the structure–activity-relationships of substituents on this position. Compounds were tested as inhibitors of both recombinant Mtb NadE and Mtb whole cells. While the parent compound displayed very weak inhibition against Mtb NadE (IC50 = 1000 µM), we observed up to a 10-fold enhancement in potency after optimization. Replacement of the 3,4-dichloro group on the phenyl ring of the parent compound with 4-nitro yielded 4f, the most potent compound of the series with an IC50 value of 90 µM against Mtb NadE. Our modeling results show that these urea-sulfonamides potentially bind to the intramolecular ammonia tunnel, which transports ammonia from the glutaminase domain to the active site of the enzyme. This hypothesis is supported by data showing that, even when treated with potent inhibitors, NadE catalysis is restored when treated with exogenous ammonia. Most of these compounds also inhibited Mtb cell growth with MIC values of 19–100 µg/mL. These results improve our understanding of the SAR of the urea-sulfonamides, their mechanism of binding to the enzyme, and of Mtb NadE as a potential antitubercular drug target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号