首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56249篇
  免费   4704篇
  国内免费   47篇
  61000篇
  2023年   200篇
  2022年   584篇
  2021年   1003篇
  2020年   556篇
  2019年   741篇
  2018年   1133篇
  2017年   889篇
  2016年   1566篇
  2015年   2585篇
  2014年   2875篇
  2013年   3368篇
  2012年   4342篇
  2011年   4153篇
  2010年   2637篇
  2009年   2319篇
  2008年   3337篇
  2007年   3100篇
  2006年   2833篇
  2005年   2558篇
  2004年   2502篇
  2003年   2226篇
  2002年   1897篇
  2001年   1645篇
  2000年   1536篇
  1999年   1218篇
  1998年   528篇
  1997年   468篇
  1996年   401篇
  1995年   393篇
  1994年   305篇
  1993年   298篇
  1992年   639篇
  1991年   515篇
  1990年   474篇
  1989年   479篇
  1988年   405篇
  1987年   390篇
  1986年   318篇
  1985年   329篇
  1984年   270篇
  1983年   224篇
  1982年   189篇
  1981年   162篇
  1980年   160篇
  1979年   220篇
  1978年   197篇
  1977年   179篇
  1976年   170篇
  1974年   196篇
  1972年   155篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
941.
The redox co‐factor nicotinamide adenine dinucleotide (NAD) declines with age, and NAD deficits are specifically associated with dysfunctional energy metabolism in late‐onset Alzheimer''s disease (LOAD). Nicotinamide riboside (NR), a dietary NAD precursor, has been suggested to ameliorate the aging process or neurodegeneration. We assessed whether NR with or without caffeine, which increases nicotinamide mononucleotide transferase subtype 2 (NMNAT2), an essential enzyme in NAD production, modulates bioenergetic functions in LOAD. In LOAD patients—and young or old control individuals—derived dermal fibroblasts as well as in induced pluripotent stem cell‐differentiated neural progenitors and astrocytes, NR and caffeine cell type‐specifically increased the NAD pool, transiently enhanced mitochondrial respiration or glycolysis and altered the expression of genes in the NAD synthesis or consumption pathways. However, continued treatment led to reversed bioenergetic effects. Importantly, NR and caffeine did not alter the characteristics of a previously documented inherent LOAD‐associated bioenergetic phenotype. Thus, although NR and caffeine can partially restore diminished NAD availability, increasing NAD alone may not be sufficient to boost or restore energy metabolism in brain aging or alter aberrant energy management in LOAD. Nicotinamide riboside might still be of value in combination with other agents in preventive or therapeutic intervention strategies to address the aging process or age‐associated dementia.  相似文献   
942.
We present a mathematical method for acceleration workspace analysis of cooperating multi-finger robot systems using a model of point-contact with friction. A new unified formulation from dynamic equations of cooperating multi-finger robots is derived considering the force and acceleration relationships between the fingers and the object to be handled. From the dynamic equation, maximum translational and rotational acceleration bounds of an object are calculated under given constraints of contact conditions, configurations of fingers, and bounds on the torques of joint actuators for each finger. Here, the rotational acceleration bounds can be applied as an important manipulability index when the multi-finger robot grasps an object. To verify the proposed method, we used a set of case studies with a simple multi-finger mechanism system. The achievable acceleration boundary in task space can be obtained successfully with the proposed method and the acceleration boundary depends on the configurations of fingers.  相似文献   
943.
Erwinia amylovora, the causal agent of fire-blight disease in apple and pear trees, was first isolated in South Korea in 2015. Although numerous studies, including omics analyses, have been conducted on other strains of E. amylovora, studies on South Korean isolates remain limited. In this study, we conducted a comparative proteomic analysis of the strain TS3128, cultured in three media representing different growth conditions. Proteins related to virulence, type III secretion system, and amylovoran production, were more abundant under minimal conditions than in rich conditions. Additionally, various proteins associated with energy production, carbohydrate metabolism, cell wall/membrane/envelope biogenesis, and ion uptake were identified under minimal conditions. The strain TS3128 expresses these proteins to survive in harsh environments. These findings contribute to understanding the cellular mechanisms driving its adaptations to different environmental conditions and provide proteome profiles as reference for future studies on the virulence and adaptation mechanisms of South Korean strains.  相似文献   
944.
It has been recently that particulate matter (PM) exposure increases the risk and exacerbation of allergic asthma. However, the underlying mechanisms and factors associated with increased allergic responses remain elusive. We evaluated IL‐23 and IL‐23R (receptor) expression, as well as changes in the asthmatic phenotype in mice administered PM and a low dose of house dust mite (HDM). Next, changes in the phenotype and immune responses were evaluated after intranasal administration of anti‐IL‐23 antibody during co‐exposure to PM and low‐dose HDM. We also performed in vitro experiments to investigate the effect of IL‐23. IL‐23 expression was significantly increased in Epcam+CD45− and CD11c+ cells, while that of IL‐23R was increased in Epcam+CD45− cells only in mice administered PM and low‐dose HDM. Administration of anti‐IL‐23 antibody led to decreased airway hyperresponsiveness, eosinophils, and activation of dendritic cells, reduced populations of Th2 Th17, ILC2, the level of IL‐33 and granulocyte‐macrophage colony‐stimulating factor (GM‐CSF). Inhibition of IL‐23 in PM and low‐dose HDM stimulated airway epithelial cell line resulted in decreased IL‐33, GM‐CSF and affected ILC2 and the activation of BMDCs. PM augmented the phenotypes and immunologic responses of asthma even at low doses of HDM. Interestingly, IL‐23 affected immunological changes in airway epithelial cells.  相似文献   
945.
Hypoxia leads to significant cellular stress that has diverse pathological consequences such as cardiovascular diseases and cancers. MicroRNAs (miRNAs) are one of regulators of the adaptive pathway in hypoxia. We identified a hypoxia-induced miRNA, miR-34c, that was significantly upregulated in hypoxic human umbilical cord vein endothelial cells (HUVECs) and in murine blood vessels on day 3 of hindlimb ischemia (HLI). miR-34c directly inhibited BCL2 expression, acting as a toggle switch between apoptosis and autophagy in vitro and in vivo. BCL2 repression by miR-34c activated autophagy, which was evaluated by the expression of LC3-II. Overexpression of miR-34c inhibited apoptosis in HUVEC as well as in a murine model of HLI, and increased cell viability in HUVEC. Importantly, the number of viable cells in the blood vessels following HLI was increased by miR-34c overexpression. Collectively, our findings show that miR-34c plays a protective role in hypoxia, suggesting a novel therapeutic target for hypoxic and ischemic diseases in the blood vessels.  相似文献   
946.
947.
948.
Although the mean corpuscular volume (MCV) has been associated with various diseases, these associations in relation to the age‐related trends in MCV remain unclear. Therefore, we used a dataset with over one million values to identify the relationship between ageing and MCV changes. All laboratory data obtained between November 1998 and November 2019 at Chungbuk National University Hospital were retrospectively collected. After excluding cases with missing values for individual complete blood count parameters, outlier MCV values, and ages less than 1 year and more than 88 years, 977,335 MCV values were obtained from 309,393 patients. Principal component analysis of blood components with ages and analysis of the median value changes for each blood component across decade‐wise age groups were conducted to identify relationships between ageing and changes in blood components. The median values of MCV showed gradual increments with age. The linear relationship for patients aged 1–25 years had a larger slope than that for patients aged 26–88 years. For MCV, the equation for patients aged 1–25 years was 0.40*(age) + 81.24 in females and 0.45*(age) + 79.58 in males. The equation for patients aged 26–90 years was 0.04*(age) + 88.97 in females and 0.06*age + 88.30 in males. Among patients aged >40 years, the MCV value was higher in men than in women. Analysis of a large dataset showed that the MCV gradually increased with age and the linear relationship differed between patients aged 1–25 and 26–88 years.  相似文献   
949.
Epidemiological studies have suggested a lower incidence of arrhythmia‐induced sudden cardiac death in women than in men. 17β‐oestradiol (E2) has been reported to have a post‐myocardial infarction antiarrhythmic effect, although the mechanisms have yet to be elucidated. We investigated whether E2‐mediated antioxidation regulates macrophage polarization and affects cardiac sympathetic reinnervation in rats after MI. Ovariectomized Wistar rats were randomly assigned to placebo pellets, E2 treatment, or E2 treatment +3‐morpholinosydnonimine (a peroxynitrite generator) and followed for 4 weeks. The infarct sizes were similar among the infarcted groups. At Day 3 after infarction, post‐infarction was associated with increased superoxide levels, which were inhibited by administering E2. E2 significantly increased myocardial IL‐10 levels and the percentage of regulatory M2 macrophages compared with the ovariectomized infarcted alone group as assessed by immunohistochemical staining, Western blot and RT‐PCR. Nerve growth factor colocalized with both M1 and M2 macrophages at the magnitude significantly higher in M1 compared with M2. At Day 28 after infarction, E2 was associated with attenuated myocardial norepinephrine levels and sympathetic hyperinnervation. These effects of E2 were functionally translated in inhibiting fatal arrhythmias. The beneficial effect of E2 on macrophage polarization and sympathetic hyperinnervation was abolished by 3‐morpholinosydnonimine. Our results indicated that E2 polarized macrophages into the M2 phenotype by inhibiting the superoxide pathway, leading to attenuated nerve growth factor‐induced sympathetic hyperinnervation after myocardial infarction.  相似文献   
950.
As intracellular parasites, viruses exploit cellular proteins at every stage of infection. Adenovirus outbreaks are associated with severe acute respiratory illnesses and conjunctivitis, with no specific antiviral therapy available. An adenoviral vaccine based on human adenovirus species D (HAdV-D) is currently in use for COVID-19. Herein, we investigate host interactions of HAdV-D type 37 (HAdV-D37) protein IIIa (pIIIa), identified by affinity purification and mass spectrometry (AP-MS) screens. We demonstrate that viral pIIIa interacts with ubiquitin-specific protease 9x (USP9x) and Ran-binding protein 2 (RANBP2). USP9x binding did not invoke its signature deubiquitination function but rather deregulated pIIIa-RANBP2 interactions. In USP9x-knockout cells, viral genome replication and viral protein expression increased compared to wild type cells, supporting a host-favored mechanism for USP9x. Conversely, RANBP2-knock down reduced pIIIa transport to the nucleus, viral genome replication, and viral protein expression. Also, RANBP2-siRNA pretreated cells appeared to contain fewer mature viral particles. Transmission electron microscopy of USP9x-siRNA pretreated, virus-infected cells revealed larger than typical paracrystalline viral arrays. RANBP2-siRNA pretreatment led to the accumulation of defective assembly products at an early maturation stage. CRM1 nuclear export blockade by leptomycin B led to the retention of pIIIa within cell nuclei and hindered pIIIa-RANBP2 interactions. In-vitro binding analyses indicated that USP9x and RANBP2 bind to C-terminus of pIIIa amino acids 386–563 and 386–510, respectively. Surface plasmon resonance testing showed direct pIIIa interaction with recombinant USP9x and RANBP2 proteins, without competition. Using an alternative and genetically disparate adenovirus type (HAdV-C5), we show that the demonstrated pIIIa interaction is also important for a severe respiratory pathogen. Together, our results suggest that pIIIa hijacks RANBP2 for nuclear import and subsequent virion assembly. USP9x counteracts this interaction and negatively regulates virion synthesis. This analysis extends the scope of known adenovirus-host interactions and has potential implications in designing new antiviral therapeutics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号