首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   22篇
  2022年   3篇
  2021年   13篇
  2020年   3篇
  2019年   7篇
  2018年   5篇
  2017年   7篇
  2016年   8篇
  2015年   20篇
  2014年   18篇
  2013年   20篇
  2012年   25篇
  2011年   14篇
  2010年   17篇
  2009年   10篇
  2008年   12篇
  2007年   19篇
  2006年   15篇
  2005年   5篇
  2004年   14篇
  2003年   11篇
  2002年   9篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1997年   2篇
  1996年   2篇
  1993年   1篇
  1991年   1篇
  1986年   1篇
  1968年   1篇
排序方式: 共有279条查询结果,搜索用时 546 毫秒
21.
The circling (cir/cir) mouse is a murine model for human nonsyndromic deafness DFNB6. Transmembrane inner ear (tmie) is the causative gene and its mutation through deletion of a 40-kilobase genomic region including tmie leads to deafness. The function of Tmie is unknown. To better understand the function of Tmie, we focused on the spatiotemporal expression of tmie in the rat cochlea by using a Tmie-specific antibody. Results showed that tmie expression was prominent in early postnatal rat cochleas in the stereocilia bundles of hair cells. The Tmie signal spread from the stereocilia to the hair cell body region and on to organ of Corti cells. No Tmie signal was observed in cell nuclei; Tmie was localized to the cytoplasm. Because Tmie is predicted to have 1 or 2 transmembrane domains, we postulate that it is localized to membrane-based organelles or the plasma membrane. Our results imply that Tmie exists in the cytoplasm and may have a key role in the maturation and structure of stereocilia bundles in developing hair cells. After hair cell maturation, Tmie is thought to be involved in the maintenance of organ of Corti cells.Circling is often observed in mouse and rat deafness mutants and is commonly suggested to be a consequence of inner ear defects that impair vestibular systems.3,12,14 The circling (cir/cir) mouse is a murine model for human nonsyndromic deafness DFNB6; these mice have abnormal circling behavior, suggesting a balance disorder, and profound deafness.6,7 The most notable pathologic phenotypes of circling mice are the almost completely degenerated cochlea and remarkably reduced cellularity in spiral ganglion neurons. The causative gene for circling is transmembrane inner ear (tmie), with a 40-kilobase genomic deletion including tmie.1 tmie is also the causative gene of the spinner (sr/sr) mouse, which has phenotypes similar to circling mice, although the mutation patterns are different.8 Spinner mice also show circling behavior, hearing loss, imbalance, and swimming inability. In addition, spinner mice have 2 mutations in the tmie gene: the 40-kb genomic deletion including tmie and a point mutation that leads to a truncated protein.8In humans, 7 different homozygous recessive mutations in TMIE currently are known to exist in affected members of consanguineous families segregating severe-to-profound prelingual deafness, consistent with linkage to DFNB6.9,10 Although the functions of murine Tmie and human TMIE are unknown, this protein appears to be important for normal hearing and vestibular function.In a previous study, we produced transgenic mice overexpressing tmie that resulted in phenotypic rescue of circling.11 Normal expression of transgenic tmie induced phenotypic rescue in circling homozygous mutants, although some mice did not show amelioration of abnormal behavior, hearing ability, or tissue morphology in the inner ear. Therefore the Tmie protein is required for normal inner ear function in mouse.11To better understand the function of Tmie, we focused on the spatiotemporal expression of tmie. Knowing when, where, and to what extent this protein is produced in the developing inner ear will provide important clues to protein function. In adult mouse and rat, tmie is expressed in various tissues.2,13 Whether Tmie plays an important role in those tissues is uncertain, because circling mice that lack the entire tmie gene have no noteworthy problems in any tissues except those of the inner ear systems.6In this study, we were interested in the postnatal stages before and after the onset of hearing (around postnatal day [P] 12) in rats; therefore, the postnatal period P0 to19 was studied. Although all the cells that form the mature cochlea are present at birth, important conformational changes occur during this period, including the formation of the tunnel of Corti and the establishment or retraction of neuronal connections. The expression pattern of tmie in the developing inner ear during early postnatal development has not been investigated previously. Here we document our use of a Tmie-specific antibody to elucidate the spatial and temporal expression of tmie in the rat inner ear during postnatal development.  相似文献   
22.
Irradiation of the heart and vasculature can cause a spectrum of cardiovascular complications, including increased risk of myocardial infarction or coronary heart disease. Although irradiation is implicated in oxidant stress and chronic inflammation, the underlying molecular mechanisms have not been elucidated. We tested the hypothesis that irradiation-initiated upregulation of xanthine oxidase (XO), a primary source of cardiovascular reactive oxygen species, contributes to endothelial dysfunction and increased vascular stiffness. Twenty-two, 3-month-old Sprague–Dawley male rats were gamma-irradiated at the following doses: 0, 50, 160, and 500 cGy. Rats exposed to 500 cGy showed a significant increase in endothelial XO expression and a twofold increase in XO activity, compared to the 0 cGy controls. Endothelial function was investigated ex vivo through vascular tension dose–responses to the endothelial dependent vasodilator, acetylcholine. Endothelial-dependent relaxation in aorta of the 500 cGy exposed rats was significantly attenuated from the control group. Remarkably, specific inhibition of XO with oxypurinol restored the relaxation response to that of the control. Furthermore, these ex vivo results are reflected in vivo through alterations in vascular stiffness, as measured by pulse wave velocity (PWV). As early as 1-day post-exposure, rats exhibited a significant increase in PWV from pre-exposure. The PWV of irradiated rats (50, 160, and 500 cGy) were greater than those of 0 cGy control rats at 1 day, 1 and 2 weeks. The sham and irradiated rats possessed equivalent pre-exposure PWV, with sham showing no change over 2 weeks. Thus, these findings suggest that early upregulation of XO contributes to oxidative stress and endothelial nitro-redox imbalance with resultant endothelial dysfunction and altered vascular mechanics. Furthermore, these data identify XO as a potential molecular target for attenuating irradiation-induced cardiovascular injury.  相似文献   
23.
In Korea, the Mycobacterium tuberculosis K-strain is the most prevalent clinical isolates and belongs to the Beijing family. In this study, we conducted comparative porteomics of expressed proteins of clinical isolates of the K-strain with H37Rv, H37Ra as well as the vaccine strain of Mycobacterium bovis BCG following phagocytosis by the human monocytic cell line U-937. Proteins were analyzed by 2-D PAGE and MALDITOF-MS. Two proteins, Mb1363 (probable glycogen phosphorylase GlgP) and MT2656 (Haloalkane dehalogenase LinB) were most abundant after phagocytosis of M. tuberculosis K-strain. This approach provides a method to determine specific proteins that may have critical roles in tuberculosis pathogenesis.  相似文献   
24.
A fibrinolytic protease (PoFE) was purified from the cultured mycelia of the edible oyster mushroom Pleurotus ostreatus, using a combination of various chromatographies. The purification protocol resulted in an 876-fold purification of the enzyme, with a final yield of 6.5%. The apparent molecular mass of the purified enzyme was estimated to be 32 kDa by SDS-PAGE, fibrin-zymography, and size exclusion using FPLC. The optimal reaction pH value and temperature were pH 6.5 and 35 degrees C, respectively. PoFE effectively hydrolyzed fibrinogen, preferentially digesting the A alpha-chain and the B beta-chain over the gamma-chain. Enzyme activity was enhanced by the addition of Ca2+, Zn2+, and Mg2+ ions. Furthermore, PoFE activity was potently inhibited by EDTA, and it was found to exhibit a higher specificity for the chromogenic substrate S-2586 for chymotrypsin, indicating that the enzyme is a chymotrypsin-like metalloprotease. The first 19 amino acid residues of the N-terminal sequence were ALRKGGAAALNIYSVGFTS, which is extremely similar to the metalloprotease purified from the fruiting body of P. ostreatus. In addition, we cloned the PoFE protein, encoding gene, and its nucleotide sequence was determined. The cDNA of cloned PoFE is 867 nucleotides long and consists of an open reading frame encoding 288 amino acid residues. Its cDNA showed a high degree of homology with PoMEP from P. ostreatus fruiting body. The mycelia of P. ostreatus may thus represent a potential source of new therapeutic agents to treat thrombosis.  相似文献   
25.
26.
Ginsenoside Rg5 is a compound newly synthesized during the steaming process of ginseng; however, its biological activity has not been elucidated with regard to endothelial function. We found that Rg5 stimulated in vitro angiogenesis of human endothelial cells, consistent with increased neovascularization and blood perfusion in a mouse hind limb ischemia model. Rg5 also evoked vasorelaxation in aortic rings isolated from wild type and high cholesterol-fed ApoE−/− mice but not from endothelial nitric-oxide synthase (eNOS) knock-out mice. Angiogenic activity of Rg5 was highly associated with a specific increase in insulin-like growth factor-1 receptor (IGF-1R) phosphorylation and subsequent activation of multiple angiogenic signals, including ERK, FAK, Akt/eNOS/NO, and Gi-mediated phospholipase C/Ca2+/eNOS dimerization pathways. The vasodilative activity of Rg5 was mediated by the eNOS/NO/cGMP axis. IGF-1R knockdown suppressed Rg5-induced angiogenesis and vasorelaxation by inhibiting key angiogenic signaling and NO/cGMP pathways. In silico docking analysis showed that Rg5 bound with high affinity to IGF-1R at the same binding site of IGF. Rg5 blocked binding of IGF-1 to its receptor with an IC50 of ∼90 nmol/liter. However, Rg5 did not induce vascular inflammation and permeability. These data suggest that Rg5 plays a novel role as an IGF-1R agonist, promoting therapeutic angiogenesis and improving hypertension without adverse effects in the vasculature.  相似文献   
27.
28.
29.
NADPH is an essential cofactor for many enzymatic reactions including glutathione metabolism and fat and cholesterol biosynthesis. We have reported recently an important role for mitochondrial NADP(+)-dependent isocitrate dehydrogenase in cellular defense against oxidative damage by providing NADPH needed for the regeneration of reduced glutathione. However, the role of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is still unclear. We report here for the first time that IDPc plays a critical role in fat and cholesterol biosynthesis. During differentiation of 3T3-L1 adipocytes, both IDPc enzyme activity and its protein content were increased in parallel in a time-dependent manner. Increased expression of IDPc by stable transfection of IDPc cDNA positively correlated with adipogenesis of 3T3-L1 cells, whereas decreased IDPc expression by an antisense IDPc vector retarded adipogenesis. Furthermore, transgenic mice with overexpressed IDPc exhibited fatty liver, hyperlipidemia, and obesity. In the epididymal fat pads of the transgenic mice, the expressions of adipocyte-specific genes including peroxisome proliferator-activated receptor gamma were markedly elevated. The hepatic and epididymal fat pad contents of acetyl-CoA and malonyl-CoA in the transgenic mice were significantly lower, whereas the total triglyceride and cholesterol contents were markedly higher in the liver and serum of transgenic mice compared with those measured in wild type mice, suggesting that the consumption rate of those lipogenic precursors needed for fat biosynthesis must be increased by elevated IDPc activity. Taken together, our findings strongly indicate that IDPc would be a major NADPH producer required for fat and cholesterol synthesis.  相似文献   
30.
The circling mouse (C57BL6-cir) shows deafness and circling behavior in homozygotes. The mutation is transmitted with 100% penetrance by an autosomal recessive gene on chromosome 9. In the present study, we characterized the circling mutation as a 40-kilobase deletion that includes the transmembrane inner ear (tmie) gene. The tmie gene was first identified because its mutation causes deafness and circling behavior in spinner mice. We suggest that the genomic deletion of circling mice is a different, but allelic, mutation to that of spinner mice. In addition, during general behavioral investigations for complementation tests of the 2 strains, we found that circling and spinner mice may differ in their behavioral responses to a new environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号