首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1470篇
  免费   85篇
  国内免费   8篇
  1563篇
  2024年   3篇
  2023年   11篇
  2022年   31篇
  2021年   43篇
  2020年   25篇
  2019年   31篇
  2018年   50篇
  2017年   40篇
  2016年   51篇
  2015年   84篇
  2014年   104篇
  2013年   92篇
  2012年   138篇
  2011年   120篇
  2010年   92篇
  2009年   65篇
  2008年   75篇
  2007年   81篇
  2006年   71篇
  2005年   68篇
  2004年   41篇
  2003年   36篇
  2002年   35篇
  2001年   28篇
  2000年   35篇
  1999年   19篇
  1998年   13篇
  1997年   9篇
  1996年   13篇
  1995年   4篇
  1994年   2篇
  1992年   6篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1988年   6篇
  1987年   3篇
  1986年   1篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1980年   3篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1968年   2篇
  1922年   1篇
  1899年   1篇
排序方式: 共有1563条查询结果,搜索用时 15 毫秒
11.
12.
13.
PDGF-C, which is abundant in the malignant breast tumor microenvironment, plays an important role in cell growth and survival. Because tumor-associated macrophages (TAMs) contribute to cancer malignancy, macrophage survival mechanisms are an attractive area of research into controlling tumor progression. In this study, we investigated PDGF-C-mediated signaling pathways involved in anti-apoptotic effects in macrophages. We found that the human malignant breast cancer cell line MDA-MB-231 produced high quantities of PDGF-C, whereas benign MCF-7 cells did not. Recombinant PDGF-C induced PDGF receptor α chain phosphorylation, followed by Akt and Bad phosphorylation in THP-1-derived macrophages. MDA-MB-231 culture supernatants also activated macrophage PDGF-Rα. PDGF-C prevented staurosporine-induced macrophage apoptosis by inhibiting the activation of caspase-3, -7, -8, and -9 and cleavage of poly(ADP-ribose) polymerase. Finally, TAMs isolated from the PDGF-C knockdown murine breast cancer cell line 4T1 and PDGF-C knockdown MDA-MB-231-derived tumor mass showed higher rates of apoptosis than the respective WT controls. Collectively, our results suggest that tumor cell-derived PDGF-C enhances TAM survival, promoting tumor malignancy.  相似文献   
14.
We examined changes in zeta potential (the surface charge density, zeta) of the complexes of liposome (nmol)/DNA (microg) (L/D) formed in water at three different ratios (L/D=1, 10 and 20) by changing the ionic strength or pH to find an optimum formulation for in vivo gene delivery. At high DNA concentrations, zeta of the complexes formed in water at L/D=10 was significantly lowered by adding NaCl (zeta=+8.44+/-3.1 to -27.6+/-3.5 mV) or increasing pH from 5 (zeta=+15.3+/-1.0) to 9 (zeta=-22.5+/-2.5 mV). However, the positively charged complexes formed at L/D=20 (zeta=+6.2+/-3.5 mV) became negative as NaCl was added at alkaline pH as observed in medium (zeta=-19.7+/-9.9 mV). Thus, the complexes formed in water under the optimum condition were stable and largely negatively charged at L/D=1 (zeta=-58.1+/-3.9 mV), unstable and slightly positively charged at L/D=10 (zeta=+8.44+/-3.7 mV), and unstable and largely positively charged at L/D=20 (zeta=+24.3+/-3.6 mV). The negatively charged complexes efficiently delivered DNA into both solid and ascitic tumor cells. However, the positively charged complexes were very poor in delivering DNA into solid tumors, yet were efficient in delivering DNA into ascitic tumors grown in the peritoneum regardless of complex size. This slightly lower gene transfer efficiency of the negatively charged complexes can be as efficient as the positively charged ones when an injection is repeated (at least two injections), which is the most common case for therapy regimes. The results indicate that optimum in vivo lipofection may depend on the site of tumor growth.  相似文献   
15.
To explore the physiological significance of N‐glycan maturation in the plant Golgi apparatus, gnt1, a mutant with loss of N‐acetylglucosaminyltransferase I (GnTI) function, was isolated in Oryza sativa. gnt1 exhibited complete inhibition of N‐glycan maturation and accumulated high‐mannose N‐glycans. Phenotypic analyses revealed that gnt1 shows defective post‐seedling development and incomplete cell wall biosynthesis, leading to symptoms such as failure in tiller formation, brittle leaves, reduced cell wall thickness, and decreased cellulose content. The developmental defects of gnt1 ultimately resulted in early lethality without transition to the reproductive stage. However, callus induced from gnt1 seeds could be maintained for periods, although it exhibited a low proliferation rate, small size, and hypersensitivity to salt stress. Shoot regeneration and dark‐induced leaf senescence assays indicated that the loss of GnTI function results in reduced sensitivity to cytokinin in rice. Reduced expression of A‐type O. sativa response regulators that are rapidly induced by cytokinins in gnt1 confirmed that cytokinin signaling is impaired in the mutant. These results strongly support the proposed involvement of N‐glycan maturation in transport as well as in the function of membrane proteins that are synthesized via the endomembrane system.  相似文献   
16.
17.

Background

Lactic acidosis is a common cause of high anion gap metabolic acidosis. Sodium bicarbonate may be considered for an arterial pH <7.15 but paradoxically depresses cardiac performance and exacerbates acidosis by enhancing lactate production. This study aimed to evaluate the cause and mortality rate of lactic acidosis and to investigate the effect of factors, including sodium bicarbonate use, on death.

Methods

We conducted a single center analysis from May 2011 through April 2012. We retrospectively analyzed 103 patients with lactic acidosis among 207 patients with metabolic acidosis. We used SOFA and APACHE II as severity scores to estimate illness severity. Multivariate logistic regression analysis and Cox regression analysis models were used to identify factors that affect mortality.

Results

Of the 103 patients with a mean age of 66.1±11.4 years, eighty-three patients (80.6%) died from sepsis (61.4%), hepatic failure, cardiogenic shock and other causes. The percentage of sodium bicarbonate administration (p = 0.006), catecholamine use, ventilator care and male gender were higher in the non-survival group than the survival group. The non-survival group had significantly higher initial and follow-up lactic acid levels, lower initial albumin, higher SOFA scores and APACHE II scores than the survival group. The mortality rate was significantly higher in patients who received sodium bicarbonate. Sodium bicarbonate administration (p = 0.016) was associated with higher mortality. Independent factors that affected mortality were SOFA score (Exp (B) = 1.72, 95% CI = 1.12–2.63, p = 0.013) and sodium bicarbonate administration (Exp (B) = 6.27, 95% CI = 1.10–35.78, p = 0.039).

Conclusions

Lactic acidosis, which has a high mortality rate, should be evaluated in patients with metabolic acidosis. In addition, sodium bicarbonate should be prescribed with caution in the case of lactic acidosis because sodium bicarbonate administration may affect mortality.  相似文献   
18.
Above- and belowground biomass and nitrogen (N) and phosphorus (P) distribution within threeQuercus acutissima stands were investigated in central Korea. The average age (year) and diameter at breast height (DBH, cm) were 10.8 and 7.9 for Stand 1, 38.2 and 17.1 for Stand 2, and 44.0 and 20.7 for Stand 3, respectively. Fifteen trees were destructively harvested for dimension analysis of component biomass (stem wood, stem bark, foliage, branches, and roots) plus N and P concentrations. Total biomass (t ha-1) was 88.7 for Stand 1, 154.9 for Stand 2, and 278.1 for Stand 3 while N and P contents in all tree components (kg ha-1) were 483.3 and 52.2, 697.1 and 55.0, and 1113.9 and 83.7. Nitrogen concentrations were highest in the foliage, followed by the stem bark, branches or roots, and stem wood. In contrast, P concentrations were greatest in the roots, then foliage, branches, stem bark, and stem wood. In general, N and P concentrations in these components significantly decreased with tree age and DBH, while N and P contents significantly increased with age and size. These relationships were stronger for size than for age. Our current data could be utilized to estimate N and P budgets for silvicultural practices, including fertilization, thinning, and harvesting.  相似文献   
19.
We investigated the influence of stand density [938 tree ha−1 for high stand density (HD), 600 tree ha−1 for medium stand density (MD), and 375 tree ha−1 for low stand density (LD)] on soil CO2 efflux (R S) in a 70-year-old natural Pinus densiflora S. et Z. forest in central Korea. Concurrent with R S measurements, we measured litterfall, total belowground carbon allocation (TBCA), leaf area index (LAI), soil temperature (ST), soil water content (SWC), and soil nitrogen (N) concentration over a 2-year period. The R S (t C ha−1 year−1) and leaf litterfall (t C ha−1 year−1) values varied with stand density: 6.21 and 2.03 for HD, 7.45 and 2.37 for MD, and 6.96 and 2.23 for LD, respectively. In addition, R S was correlated with ST (R 2 = 0.77–0.80, P < 0.001) and SWC (R 2 = 0.31–0.35, P < 0.001). It appeared that stand density influenced R S via changes in leaf litterfall, LAI and SWC. Leaf litterfall (R 2 = 0.71), TBCA (R 2 = 0.64–0.87), and total soil N contents in 2007 (R 2 = 0.94) explained a significant amount of the variance in R S (P < 0.01). The current study showed that stand density is one of the key factors influencing R S due to the changing biophysical and environmental factors in P. densiflora.  相似文献   
20.
Chickpea (Cicer arietinum) is an important pulse crop in many countries in the world. The symbioses between chickpea and Mesorhizobia, which fix N2 inside the root nodules, are of particular importance for chickpea's productivity. With the aim of enhancing symbiotic efficiency in chickpea, we compared the symbiotic efficiency of C‐15, Ch‐191 and CP‐36 strains of Mesorhizobium ciceri in association with the local elite chickpea cultivar ‘Bivanij’ as well as studied the mechanism underlying the improvement of N2 fixation efficiency. Our data revealed that C‐15 strain manifested the most efficient N2 fixation in comparison with Ch‐191 or CP‐36. This finding was supported by higher plant productivity and expression levels of the nifHDK genes in C‐15 nodules. Nodule specific activity was significantly higher in C‐15 combination, partially as a result of higher electron allocation to N2 versus H+. Interestingly, a striking difference in nodule carbon and nitrogen composition was observed. Sucrose cleavage enzymes displayed comparatively lower activity in nodules established by either Ch‐191 or CP‐36. Organic acid formation, particularly that of malate, was remarkably higher in nodules induced by C‐15 strain. As a result, the best symbiotic efficiency observed with C‐15‐induced nodules was reflected in a higher concentration of the total and several major amino metabolites, namely asparagine, glutamine, glutamate and aspartate. Collectively, our findings demonstrated that the improved efficiency in chickpea symbiotic system, established with C‐15, was associated with the enhanced capacity of organic acid formation and the activities of the key enzymes connected to the nodule carbon and nitrogen metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号