首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38236篇
  免费   3253篇
  国内免费   3022篇
  44511篇
  2024年   89篇
  2023年   397篇
  2022年   910篇
  2021年   1446篇
  2020年   1094篇
  2019年   1370篇
  2018年   1446篇
  2017年   1164篇
  2016年   1663篇
  2015年   2412篇
  2014年   2866篇
  2013年   3016篇
  2012年   3554篇
  2011年   3400篇
  2010年   2153篇
  2009年   1928篇
  2008年   2293篇
  2007年   2087篇
  2006年   1872篇
  2005年   1648篇
  2004年   1543篇
  2003年   1321篇
  2002年   1105篇
  2001年   628篇
  2000年   508篇
  1999年   439篇
  1998年   364篇
  1997年   279篇
  1996年   242篇
  1995年   186篇
  1994年   164篇
  1993年   106篇
  1992年   129篇
  1991年   110篇
  1990年   103篇
  1989年   91篇
  1988年   71篇
  1987年   55篇
  1986年   36篇
  1985年   44篇
  1984年   48篇
  1983年   22篇
  1982年   21篇
  1981年   14篇
  1980年   7篇
  1979年   9篇
  1978年   6篇
  1972年   7篇
  1970年   5篇
  1967年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Fluorescent proteins (FPs) possess a wide variety of spectral properties that make them of widespread interest as optical markers. These proteins can be applied as pH indicators or metal biosensors. The discovery and characterization of new fluorescent proteins is expected to further extend their application. Here, we report the spectral and structural analysis of a red fluorescent protein from Acropora digitifera (designated AdRed). This protein shows a tetrameric state and is red emitting, with excitation and emission maxima at 567 and 612 nm, respectively. Its crystal structure shows the tetrameric interface stabilized by hydrogen bonding and salt bridges. The electron density map of the chromophore, consisting of Asp66–Tyr67–Gly68, shows the decarboxylated side chain of Asp66. Ser223, located near the chromophore, has the role of bridging His202 and Glu221, and is part of the hydrogen bond network. Mutated AdRed with Cys148Ser reveals a blue shift in fluorescence excitation and emission. Our results provide insights into understanding the molecular function of AdRed and other FPs.  相似文献   
993.
During the last four decades, nuclear medicine has undergone enormous growth, and positron emission tomography (PET) has been in the driving seat for most of the time. 18F-fluorodeoxyglucose (18F-FDG) is the most widely used agent for the detection of hibernating myocardium and metabolically active cancer tissue. But its cost and limited availability are the main limitations. For a long time different researchers and groups of pharmacists have tried to label glucose with a cheaper and long-acting radionuclide like 99mTc. However, they failed to achieve this goal owing to the chemical complexity of 99mTc and the lack of maintaining the physiological activity of diagnostic compounds. A pre-targeting strategy based on strain-promoted [3 + 2] azide-alkyne cycloaddition (SPAAC) reaction was applied to solve this problem. Functional click synthons were synthesized: 2-azido-2-deoxy-d-glucose (GlucN3) as a glucose analogue, and N- (2- (2- (2- (bis (pyridin-2-ylmethyl) amino) ethoxy) ethoxy) ethyl-2- (6H-11,12-didehydrodibenzo [a,e] cycloocten-5-ylideneaminooxy) acetamide (C7) as a 99mTc(CO)3 labeling and azido-binding group. The results of biodistribution experiments in mice bearing S180 tumor show the relatively high tumor/blood ratio (up to 2.95) and tumor/muscle ratio (up to 6.37), and both of them decreases significantly in the glucose blocking experiment. It indicates that GlucN3 behaves similarly to glucose and that in vivo SPAAC reactions can occur effectively. It is supposed that this pre-targeting strategy can indeed enhance target specificity and may be used for glucose metabolism imaging in tumor diagnosis.  相似文献   
994.
In this investigation, a series of 1-phenyl-3-(5-(pyrimidin-4-ylthio)-1,3,4- thiadiazol-2-yl)urea receptor tyrosine kinase inhibitors were synthesized by a simple and efficient structure-based design. Structure-activity relationship (SAR) analysis of these compounds based on cellular assays led to the discovery of a number of compounds that showed potent activity against human chronic myeloid leukemia (CML) cell line K562, but very weak or no cellular toxicity through monitoring the growth kinetics of K562 cell during a period of 72 h using the real-time live-cell imaging. Among these compounds, 1-(5-((6-((3-morpholinopropyl) amino)pyrimidin-4-yl)thio)-1,3,4-thiadiazol-2-yl)-3-(4-(trifluoromethyl)phenyl)urea (7) exhibited the least cellular toxicity and better biological activity in cellular assays (K562, IC50: 0.038 μM). Compound 7 also displayed very good induced-apoptosis effect for human CML cell line K562 and exerted its effect via a significantly reduced protein phosphorylation of PI3K/Akt signal pathway by Human phospho-kinase array analysis. In vitro results indicate that 1-phenyl-3-(5-(pyrimidin-4-ylthio)-1,3,4- thiadiazol-2-yl)urea derivatives are lead molecules for further development as treatment of chronic myeloid leukemia and cancer.  相似文献   
995.
Leucyl-tRNA synthetase (LRS) plays an important role in amino acid-dependent mTORC1 signaling, which is known to be associated with cellular metabolism and proliferation. Therefore, LRS-targeting small molecules that can suppress mTORC1 activation may provide an alternative strategy to current anticancer therapy. In this work, we developed a library of leucyladenylate sulfate analogues by extensively modifying three different pharmacophoric regions comprising adenine, ribose and leucine. Several effective compounds were identified by cell-based mTORC1 activation assays and further tested for anticancer activity. The selected compounds mostly exhibited selective cytotoxicity toward five different cancer cell lines, supporting the hypothesis that the LRS-mediated mTORC1 pathway is a promising alternative target to current therapeutic approaches.  相似文献   
996.
Opportunistic viruses are a major problem for immunosuppressed individuals, particularly following organ or stem cell transplantation. Current treatments are non-existent or suffer from problems such as high toxicity or development of resistant strains. We previously published that a trafficking inhibitor that targets a host protein greatly reduces the replication of human cytomegalovirus. This inhibitor was also shown to be moderately effective against polyomaviruses, another family of opportunistic viruses. We have developed a panel of analogues for this inhibitor and have shown that these analogues maintain their high efficacy against HCMV, while substantially lowering the concentration required to inhibit polyomavirus replication. By targeting a host protein these compounds are able to inhibit the replication of two very different viruses. These observations open up the possibility of pan-viral inhibitors for immunosuppressed individuals that are effective against multiple, diverse opportunistic viruses.  相似文献   
997.
On the basis of deguelin, a series of the B,C-ring truncated surrogates with N-substituted amide linkers were investigated as HSP90 inhibitors. The structure activity relationship of the template was studied by incorporating various substitutions on the nitrogen of the amide linker and examining their HIF-1α inhibition. Among them, compound 57 showed potent HIF-1α inhibition and cytotoxicity in triple-negative breast cancer lines in a dose-dependent manner. Compound 57 downregulated expression and phosphorylation of major client proteins of HSP90 including AKT, ERK and STAT3, indicating that its antitumor activity was derived from the inhibition of HSP90 function. The molecular modeling of 57 demonstrated that 57 bound well to the C-terminal ATP-binding pocket in the open conformation of the hHSP90 homodimer with hydrogen bonding and pi-cation interactions. Overall, compound 57 is a potential antitumor agent for triple-negative breast cancer as a HSP90 C-terminal inhibitor.  相似文献   
998.
Archaea have evolved various strategies in chromosomal organization. While histone homologues exist in most archaeal phyla, Cren7 is a chromatin protein conserved in the Crenarchaeota. Here, we show that Cren7 preferentially binds DNA with AT‐rich sequences over that with GC‐rich sequences with a binding size of 6~7 bp. Structural studies of Cren7 in complex with either an 18‐bp or a 20‐bp double‐stranded DNA fragment reveal that Cren7 binds to the minor groove of DNA as monomers in a head‐to‐tail manner. The neighboring Cren7 monomers are located on the opposite sides of the DNA duplex, with each introducing a single‐step sharp kink by intercalation of the hydrophobic side chain of Leu28, bending the DNA into an S‐shape conformation. A structural model for the chromatin fiber folded by Cren7 was established and verified by the analysis of cross‐linked Cren7‐DNA complexes by atomic force microscopy. Our results suggest that Cren7 differs significantly from Sul7, another chromatin protein conserved among Sulfolobus species, in both DNA binding and deformation. These data shed significant light on the strategy of chromosomal DNA organization in crenarchaea.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号