首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8583篇
  免费   621篇
  国内免费   4篇
  9208篇
  2024年   7篇
  2023年   36篇
  2022年   95篇
  2021年   186篇
  2020年   127篇
  2019年   159篇
  2018年   225篇
  2017年   236篇
  2016年   371篇
  2015年   539篇
  2014年   597篇
  2013年   634篇
  2012年   821篇
  2011年   792篇
  2010年   531篇
  2009年   424篇
  2008年   578篇
  2007年   524篇
  2006年   472篇
  2005年   389篇
  2004年   364篇
  2003年   332篇
  2002年   283篇
  2001年   68篇
  2000年   69篇
  1999年   60篇
  1998年   47篇
  1997年   42篇
  1996年   21篇
  1995年   21篇
  1994年   17篇
  1993年   19篇
  1992年   12篇
  1991年   14篇
  1990年   7篇
  1989年   13篇
  1988年   8篇
  1987年   4篇
  1986年   6篇
  1985年   10篇
  1984年   9篇
  1982年   4篇
  1979年   3篇
  1978年   3篇
  1976年   5篇
  1974年   3篇
  1972年   2篇
  1971年   3篇
  1969年   2篇
  1967年   2篇
排序方式: 共有9208条查询结果,搜索用时 15 毫秒
191.
The Arabidopsis, abscisic acid responsive element-binding factor 3, ABF3 is known to play an important role in stress responses via regulating the expression of stress-responsive genes. In this study, we introduced pCAMBIA3301 vector harboring the ABF3 gene into creeping bentgrass (Agrostis stolonifera) through Agrobacterium-mediated transformation in order to develop a stress-tolerant variety of turfgrass. After transformation, putative transgenic plants were selected using the herbicide resistance assay. Genomic integration of the transgene was confirmed by genomic PCR and Southern blot analysis, and gene expression was validated by northern blot analysis. Under drought-stressed condition, the transgenic plants overexpressing ABF3 displayed significantly enhanced drought tolerance with higher water content and slower water loss rate than the control plants. Furthermore, the stomata of the ABF3 transgenic plants closed more than those of wild-type creeping bentgrass plants, under both non-stressed and ABA treatment conditions. In addition, the transgenic plants showed enhanced tolerance to heat stress. These results suggest that the overexpression of the ABF3 gene in creeping bentgrass might enhance survival in water-limiting and high temperature environments through increased stomatal closure and reduced water losses.  相似文献   
192.
Substantial equivalence is a critical concept for biosafety assessment of genetically modified (GM) crops. To investigate substantial equivalence among carotenoid-biofortified GM rice and five conventional rice cultivars having common white (three) and red (two) grain colors, profiles of 52 polar metabolites were analyzed using gas chromatography time-of-flight mass spectrometry. The results were compared to evaluate the differences among GM and non-GM rice cultivars using principal components analysis. The GM rice is more comparable to its non-transgenic counterpart rice variety according to the closer co-separation than for other cultivars tested. This suggests that profiling of unintended polar metabolites could be a useful tool to reveal substantial equivalence of GM rice.  相似文献   
193.
194.
The precise mechanism of TGFβ1 signaling in the progression of non-alcoholic steatohepatitis (NASH) has remained unclear. In particular, a potential regulatory mechanism by which PKCδ affects profibrogenic gene expression had never been explored. In this study, therefore, the role of PKCδ in TGFβ1 mediated α-SMA expression was investigated using NASH model mice. In preparation of the NASH model, male C57BL6/J mice were fed a methionine-choline-deficient (MCD) diet for 3 weeks, after which time they were intraperitoneally injected with lipopolysaccharide (LPS). In addition, Tlr4Lps-d (CH3/HeJ) mice were used to demonstrate the TGFβ1 signaling’s dependency on TLR4 induction. Liver histology and hepatic hepatitis markers were investigated, and hepatic gene expression levels were determined by real-time PCR. Acute liver injury by LPS injection specifically elevated not only α-SMA expression but also phospho-PKCδ in this model. In contrast, Tlr4Lps-d (CH3/HeJ) and blockade of TGFβ1 receptor by SB431542 resulted in a significant reduction of PKCδ activation and α-SMA expression. Moreover, the TGFβ1-induced α-SMA production was significantly reduced by a specific PKCδ inhibitor. These findings suggested that PKCδ plays a critical role in TGFβ1-induced α-SMA production in a NASH model. Thus, this was the first demonstration of the involvement of PKCδ in the regulation of α-SMA expression in NASH liver tissues, and the impaired induction of PKCδ phosphorylation by LPS in a steatohepatitis condition. Interestingly, treatment by PKCδ inhibitor caused dramatic reduction of myofibroblast activation, indicating that PKCδ represents a promising target for treating NASH.  相似文献   
195.

Background

Lactic acidosis is a common cause of high anion gap metabolic acidosis. Sodium bicarbonate may be considered for an arterial pH <7.15 but paradoxically depresses cardiac performance and exacerbates acidosis by enhancing lactate production. This study aimed to evaluate the cause and mortality rate of lactic acidosis and to investigate the effect of factors, including sodium bicarbonate use, on death.

Methods

We conducted a single center analysis from May 2011 through April 2012. We retrospectively analyzed 103 patients with lactic acidosis among 207 patients with metabolic acidosis. We used SOFA and APACHE II as severity scores to estimate illness severity. Multivariate logistic regression analysis and Cox regression analysis models were used to identify factors that affect mortality.

Results

Of the 103 patients with a mean age of 66.1±11.4 years, eighty-three patients (80.6%) died from sepsis (61.4%), hepatic failure, cardiogenic shock and other causes. The percentage of sodium bicarbonate administration (p = 0.006), catecholamine use, ventilator care and male gender were higher in the non-survival group than the survival group. The non-survival group had significantly higher initial and follow-up lactic acid levels, lower initial albumin, higher SOFA scores and APACHE II scores than the survival group. The mortality rate was significantly higher in patients who received sodium bicarbonate. Sodium bicarbonate administration (p = 0.016) was associated with higher mortality. Independent factors that affected mortality were SOFA score (Exp (B) = 1.72, 95% CI = 1.12–2.63, p = 0.013) and sodium bicarbonate administration (Exp (B) = 6.27, 95% CI = 1.10–35.78, p = 0.039).

Conclusions

Lactic acidosis, which has a high mortality rate, should be evaluated in patients with metabolic acidosis. In addition, sodium bicarbonate should be prescribed with caution in the case of lactic acidosis because sodium bicarbonate administration may affect mortality.  相似文献   
196.
Olfactory sensory function declines with age; though, the underlying molecular changes that occur in the olfactory bulb (OB) are relatively unknown. An important cellular signaling molecule involved in the processing, modulation, and formation of olfactory memories is nitric oxide (NO). However, excess NO can result in the production of peroxynitrite to cause oxidative and nitrosative stress. In this study, we assessed whether changes in the expression of 3-nitrotyrosine (3-NT), a neurochemical marker of peroxynitrite and thus oxidative damage, exists in the OB of young, adult, middle-aged, and aged mice. Our results demonstrate that OB 3-NT levels increase with age in normal C57BL/6 mice. Moreover, in aged mice, 3-NT immunoreactivity was found in some blood vessels and microglia throughout the OB. Notably, large and strongly immunoreactive puncta were found in mitral and tufted cells, and these were identified as lipofuscin granules. Additionally, we found many small-labeled puncta within the glomeruli of the glomerular layer and in the external plexiform layer, and these were localized to mitochondria and discrete segments of mitral and tufted dendritic plasma membranes. These results suggest that mitral and tufted cells are potential cellular targets of nitration, along with microglia and blood vessels, in the OB during aging.  相似文献   
197.
The conceptual significance of understanding functional brain alterations and cognitive deficits associated with Alzheimer’s disease (AD) process has been widely established. However, the whole-brain functional networks of AD and its prodromal stage, mild cognitive impairment (MCI), are not well clarified yet. In this study, we compared the characteristics of the whole-brain functional networks among cognitively normal (CN), MCI, and AD individuals by applying graph theoretical analyses to [18F] fluorodeoxyglucose positron emission tomography (FDG-PET) data. Ninety-four CN elderly, 183 with MCI, and 216 with AD underwent clinical evaluation and FDG-PET scan. The overall small-world property as seen in the CN whole-brain network was preserved in MCI and AD. In contrast, individual parameters of the network were altered with the following patterns of changes: local clustering of networks was lower in both MCI and AD compared to CN, while path length was not different among the three groups. Then, MCI had a lower level of local clustering than AD. Subgroup analyses for AD also revealed that very mild AD had lower local clustering and shorter path length compared to mild AD. Regarding the local properties of the whole-brain networks, MCI and AD had significantly decreased normalized betweenness centrality in several hubs regionally associated with the default mode network compared to CN. Our results suggest that the functional integration in whole-brain network progressively declines due to the AD process. On the other hand, functional relatedness between neighboring brain regions may not gradually decrease, but be the most severely altered in MCI stage and gradually re-increase in clinical AD stages.  相似文献   
198.
Controlling the prevalence of Escherichia coli O157 in cattle at the pre-harvest level is critical to reduce outbreaks of this pathogen in humans. Multilayers of factors including the environmental and bacterial factors modulate the colonization and persistence of E. coli O157 in cattle that serve as a reservoir of this pathogen. Here, we report animal factors contributing to the prevalence of E. coli O157 in cattle. We observe the lowest number of E. coli O157 in Brahman breed when compared with other crosses in an Angus-Brahman multibreed herd, and bulls excrete more E. coli O157 than steers in the pens where cattle were housed together. The presence of super-shedders, cattle excreting >105 CFU/rectal anal swab, increases the concentration of E. coli O157 in the pens; thereby super-shedders enhance transmission of this pathogen among cattle. Molecular subtyping analysis reveal only one subtype of E. coli O157 in the multibreed herd, indicating the variance in the levels of E. coli O157 in cattle is influenced by animal factors. Furthermore, strain tracking after relocation of the cattle to a commercial feedlot reveals farm-to-farm transmission of E. coli O157, likely via super-shedders. Our results reveal high risk factors in the prevalence of E. coli O157 in cattle whereby animal genetic and physiological factors influence whether this pathogen can persist in cattle at high concentration, providing insights to intervene this pathogen at the pre-harvest level.  相似文献   
199.
Proper regulation of mitophagy for mitochondrial homeostasis is important in various inflammatory diseases. However, the precise mechanisms by which mitophagy is activated to regulate inflammatory responses remain largely unknown. The NLRP3 (NLR family, pyrin domain containing 3) inflammasome serves as a platform that triggers the activation of CASP1 (caspase 1) and secretion of proinflammatory cytokines. Here, we demonstrate that SESN2 (sestrin 2), known as stress-inducible protein, suppresses prolonged NLRP3 inflammasome activation by clearance of damaged mitochondria through inducing mitophagy in macrophages. SESN2 plays a dual role in inducing mitophagy in response to inflammasome activation. First, SESN2 induces “mitochondrial priming” by marking mitochondria for recognition by the autophagic machinery. For mitochondrial preparing, SESN2 facilitates the perinuclear-clustering of mitochondria by mediating aggregation of SQSTM1 (sequestosome 1) and its binding to lysine 63 (Lys63)-linked ubiquitins on the mitochondrial surface. Second, SESN2 activates the specific autophagic machinery for degradation of primed mitochondria via an increase of ULK1 (unc-51 like kinase 1) protein levels. Moreover, increased SESN2 expression by extended LPS (lipopolysaccharide) stimulation is mediated by NOS2 (nitric oxide synthase 2, inducible)-mediated NO (nitric oxide) in macrophages. Thus, Sesn2-deficient mice displayed defective mitophagy, which resulted in hyperactivation of inflammasomes and increased mortality in 2 different sepsis models. Our findings define a unique regulatory mechanism of mitophagy activation for immunological homeostasis that protects the host from sepsis.  相似文献   
200.
Granite‐derived soils are widespread in the farmland of Korea in general. In contrast, Jeju Island has mainly volcanic ash soils. Soils and weather condition in Jeju Island created a unique agricultural system. We identified the features of ground‐dwelling insects in farmlands of Jeju Island. This study was conducted in four areas (Samdal‐ri and Susan‐ri in Seogwipo city, and Dongmyeong‐ri and Suwon‐ri in Jeju city) in Jeju Island, Korea. Field surveys were carried out twice in summer (June) and autumn (September) in 2013. Ground‐dwelling insects were sampled quantitatively by using pitfall traps. As a result, in total 3322 individuals, 137 species, 48 families and 8 orders were investigated in farmlands of Jeju Island. Especially, members of Coleoptera and Hymenoptera accounted for a large proportion of ground‐dwelling insect communities. The numbers of species and individuals for major taxonomic groups showed significant regional and seasonal differences. This study implied that the seasonal and regional differences of ground‐dwelling insect communities were affected by surrounding land use patterns, life history patterns of each taxonomic group and farmland management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号