首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10483篇
  免费   751篇
  国内免费   8篇
  2024年   10篇
  2023年   38篇
  2022年   106篇
  2021年   232篇
  2020年   170篇
  2019年   205篇
  2018年   321篇
  2017年   300篇
  2016年   453篇
  2015年   681篇
  2014年   745篇
  2013年   809篇
  2012年   1007篇
  2011年   951篇
  2010年   590篇
  2009年   505篇
  2008年   705篇
  2007年   653篇
  2006年   548篇
  2005年   477篇
  2004年   423篇
  2003年   386篇
  2002年   301篇
  2001年   128篇
  2000年   118篇
  1999年   96篇
  1998年   51篇
  1997年   45篇
  1996年   25篇
  1995年   28篇
  1994年   14篇
  1993年   13篇
  1992年   14篇
  1991年   17篇
  1990年   7篇
  1989年   11篇
  1988年   9篇
  1987年   4篇
  1986年   4篇
  1985年   10篇
  1984年   8篇
  1983年   3篇
  1982年   4篇
  1980年   3篇
  1976年   3篇
  1975年   2篇
  1972年   1篇
  1971年   3篇
  1969年   1篇
  1967年   1篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
81.
The mammalian target of rapamycin complex 1 (mTORC1) integrates nutrients, growth factors, stress, and energy status to regulate cell growth and metabolism. Amino acids promote mTORC1 lysosomal localization and subsequent activation. However, the subcellular location or interacting proteins of mTORC1 under amino acid‐deficient conditions is not completely understood. Here, we identify ADP‐ribosylation factor GTPase‐activating protein 1 (ArfGAP1) as a crucial regulator of mTORC1. ArfGAP1 interacts with mTORC1 in the absence of amino acids and inhibits mTORC1 lysosomal localization and activation. Mechanistically, the membrane curvature‐sensing amphipathic lipid packing sensor (ALPS) motifs that bind to vesicle membranes are crucial for ArfGAP1 to interact with and regulate mTORC1 activity. Importantly, ArfGAP1 represses cell growth through mTORC1 and is an independent prognostic factor for the overall survival of pancreatic cancer patients. Our study identifies ArfGAP1 as a critical regulator of mTORC1 that functions by preventing the lysosomal transport and activation of mTORC1, with potential for cancer therapeutics.  相似文献   
82.
Drought stress has detrimental effects on plants. Although the abscisic acid (ABA)‐mediated drought response is well established, defensive mechanisms to cope with dehydration‐induced proteotoxicity have been rarely studied. DRR1 was identified as an Arabidopsis drought‐induced gene encoding an ER‐localized RING‐type E3 Ub ligase. Suppression of DRR1 markedly reduced tolerance to drought and proteotoxic stress without altering ABA‐mediated germination and stomatal movement. Proteotoxicity‐ and dehydration‐induced insoluble ubiquitinated protein accumulation was more obvious in DRR1 loss‐of‐function plants than in wild‐type plants. These results suggest that DRR1 is involved in an ABA‐independent drought stress response possibly through the mitigation of dehydration‐induced proteotoxic stress.  相似文献   
83.
Background aimsCorneal inflammation after alkali burns often results in vision loss due to corneal opacification and neovascularization. Mesenchymal stem cells (MSCs) and their secreted factors (secretome) have been studied for their anti-inflammatory and anti-angiogenic properties with encouraging results. However, topical instillation of MSCs or their secretome is often accompanied by issues related to delivery or rapid washout. Polyethylene glycol (PEG) and collagen are well-known biomaterials used extensively in scaffolds for tissue engineering. To effectively suppress alkaline burn-induced corneal injury, the authors proposed encapsulating MSCs within collagen gels cross-linked with multi-functional PEG-succinimidyl esters as a means to deliver the secretome of immobilized MSCs.MethodsHuman MSCs were added to a neutralized collagen solution and mixed with a solution of four-arm PEG-N-hydroxysuccinimide. An ex vivo organ culture was conducted using rabbit corneas injured by alkali burn. MSCs were encapsulated within PEG-collagen hydrogels and injected onto the wounded cornea immediately following alkali burn and washing. Photographs of the ocular surface were taken over a period of 7 days after the alkali burn and processed for immunohistochemical evaluation. Samples were split into three groups: injury without treatment, MSCs alone, and MSCs encapsulated within PEG-collagen hydrogels.ResultsAll corneas in ex vivo organ culture lost their transparency immediately after alkali burn, and only the groups treated with MSCs and MSCs encapsulated within PEG-collagen hydrogels recovered some transparency after 7 days. Immunohistochemical analysis revealed increased expression of vimentin in the anterior corneal stroma of the group without treatment indicative of fibrotic healing, whereas less stromal vimentin was detected in the group containing MSCs encapsulated within the PEG-collagen hydrogels.ConclusionsPEG-collagen hydrogels enable the encapsulation of viable MSCs capable of releasing secreted factors onto the ocular surface. Encapsulating MSCs within PEG-collagen hydrogels may be a promising method for delivering their therapeutic benefits in cases of ocular inflammatory diseases, such as alkali burn injuries.  相似文献   
84.
IL-35 subunit EBI3 is up-regulated in pulmonary fibrosis tissues. In this study, we investigated the pathological role of EBI3 in pulmonary fibrosis and dissected the underlying molecular mechanism. Bleomycin-induced pulmonary fibrosis mouse model was established, and samples were performed gene expression analyses through RNAseq, qRT-PCR and Western blot. Wild type and EBI3 knockout mice were exposed to bleomycin to investigate the pathological role of IL-35, via lung function and gene expression analyses. Primary lung epithelial cells were used to dissect the regulatory mechanism of EBI3 on STAT1/STAT4 and STAT3. IL-35 was elevated in both human and mouse with pulmonary fibrosis. EBI3 knockdown aggravated the symptoms of pulmonary fibrosis in mice. EBI3 deficiency enhanced the expressions of fibrotic and extracellular matrix-associated genes. Mechanistically, IL-35 activated STAT1 and STAT4, which in turn suppressed DNA enrichment of STAT3 and inhibited the fibrosis process. IL-35 might be one of the potential therapeutic targets for bleomycin-induced pulmonary fibrosis.  相似文献   
85.
Riptortus pedestris (Hemiptera: Alydidae) is a serious pest of soybean and sweet persimmon and uses male produced aggregation pheromone, (E)-2-hexenyl (Z)-3-hexenoate, (E)-2-hexenyl (E)-2-hexenoate, and tetradecyl isobutyrate to facilitate food location and recognition by conspecifics. Using electroantennogram (EAG) and greenhouse bioassay, we determined which antennal segment is involved in the detection of their aggregation pheromone. In the first EAG test using individual antennal segments, significant EAG responses to 1:1:1 mixture of the aggregation pheromone were observed only from the disti-flagellum segments of both male and female antennae at both pheromone doses tested (1 µg and 100 µg). In the following EAG tests using gradually removed antennal segment(s), EAG response was still maintained when the distal half of a disti-flagellum was surgically removed, while EAG response was lost when whole segment of disti-flagellum or other whole segments were gradually removed from intact antenna of both sexes. In greenhouse experiment, removing one or both segment(s) of disti-flagellum from male or female antennae resulted in significant reduction in their attraction to the aggregation pheromone. Together, these findings support that the disti-flagellum of R. pedestris houses olfactory neurons associated with attraction to their aggregation pheromone.  相似文献   
86.
Phytochromes are plant photoreceptors that perceive red and far-red light. Upon the perception of light in Arabidopsis, light-activated phytochromes enter the nucleus and act on a set of interacting proteins, modulating their activities and thereby altering the expression levels of ~10% of the organism’s entire gene complement. Phytochromeinteracting factors (PIFs) belonging to Arabidopsis basic helix-loop-helix (bHLH) subgroup 15 are key interacting proteins that play negative roles in light responses. Their activities are post-translationally countered by light-activated phytochromes, which promote the degradation of PIFs and directly or indirectly inhibit their binding to DNA. The PIFs share a high degree of similarity, but examinations of pif single and multiple mutants have indicated that they have shared and distinct functions in various developmental and physiological processes. These are believed to stem from differences in both intrinsic protein properties and their gene expression patterns. In an effort to clarify the basis of these shared and distinct functions, we compared recently published genome-wide ChIP data, developmental gene expression maps, and responses to various stimuli for the various PIFs. Based on our observations, we propose that the biological roles of PIFs stem from their shared and distinct DNA binding targets and specific gene expression patterns.  相似文献   
87.
Interstitial cells of Cajal (ICCs) are the pacemakers of the gastrointestinal tract, and transient receptor potential melastatin type 7 (TRPM7) and Ca2+ activated Cl channels (ANO1) are candidate the generators of pacemaker potentials in ICCs. The effects of D-erythro-sphingosine (SPH) and structural analogues of SPH, that is, N,N-dimethyl-Derythro-sphingosine (N,N-DMS), FTY720, and FTY720-P on the pacemaking activities of ICCs were examined using the whole cell patch clamp technique. SPH, N,N-DMS, and FTY720 decreased the amplitudes of pacemaker potentials in ICC clusters, but resting membrane potentials displayed little change. Also, perfusing SPH, N,N-DMS, or FTY720 in the bath reduced both inward and outward TRPM7-like currents in single ICCs, and inhibited ANO1 currents. The another structural analogue of SPH, FTY720-P was ineffective at the pacemaker potentials in ICC clusters and the TRPM7-like currents in single ICCs. Furthermore, FTY720- P had no effect on ANO1. These results suggest that SPH, N,N-DMS, and FTY720 modulate the pacemaker activities of ICCs, and that TRPM7 and ANO1 channels affect intestinal motility.  相似文献   
88.
Cdc25B is an essential regulator for meiotic resumption in mouse oocytes. However, the role of this phosphatase during the later stage of the meiotic cell cycle is not known. In this study, we investigated the role of Cdc25B during metaphase II (MII) arrest in mouse oocytes. Cdc25B was extensively phosphorylated during MII arrest with an increase in the phosphatase activity toward Cdk1. Downregulation of Cdc25B by antibody injection induced the formation of a pronucleus-like structure. Conversely, overexpression of Cdc25B inhibited Ca2+-mediated release from MII arrest. Moreover, Cdc25B was immediately dephosphorylated and hence inactivated during MII exit, suggesting that Cdk1 phosphorylation is required to exit from MII arrest. Interestingly, this inactivation occurred prior to cyclin B degradation. Taken together, our data demonstrate that MII arrest in mouse oocytes is tightly regulated not only by the proteolytic degradation of cyclin B but also by dynamic phosphorylation of Cdk1.  相似文献   
89.
Migrating fish such as salmonids are affected by external environmental factors and salinity changes are particularly important, influencing spawning migration. The aim of this study was to test whether changes in salinity would affect the expression of the hypothalamic-pituitary-gonadal (HPG) axis hormones (gonadotropin-releasing hormones (GnRHs) [salmon GnRH and chicken GnRH-II], GnRH receptors [GnRHR1 and GnRHR5], and mRNA of the gonadotropin hormone [GTH] subunits [GTHα, follicle stimulating hormone β, and luteinizing hormone β]) in chum salmon (Oncorhynchus keta). Fish were progressively transferred from seawater (SW) through 50% SW to freshwater (FW), and the relationship between the osmoregulatory hormone prolactin (PRL) and sexual maturation was determined. The expression and activity of HPG hormones and their receptors, and levels of estradiol-17β and PRL increased after fish were transferred to FW, demonstrating that changes in salinity stimulate the HPG axis and PRL production in migrating chum salmon. These findings reveal details about the role of the endocrine system in maintaining homeostasis and stimulating sexual maturation and reproduction in response to salinity changes in this species.  相似文献   
90.
To establish the molecular basis of circadian rhythm control by melatonin receptors (MTs), we investigated the mitochondrial ribonucleic acid (mRNA) expressions of three types of MTs in different tissues of the olive flounder (Paralichthys olivaceus). All three types of MT mRNAs were expressed in the neural tissues, while MT1 mRNA was expressed in the peripheral tissues and MT2 and MT3 mRNAs were weakly expressed or undetected in these tissues. We observed increased MT mRNA expression in the neural tissues at night under both light–dark (LD) and constant dark (DD) conditions. Although the melatonin-treated cultured pineal gland samples showed similar diurnal variations with high-MT mRNA expression levels at night compared to those of untreated cultured pineal gland samples, the expression levels were considerably higher in the melatonin-treated samples. The plasma melatonin level also significantly increased at night. Under DD conditions, the expression patterns of MT mRNAs were similar to those under the LD photocycle, but the peak was lower and the circadian change patterns were less clear. These findings reinforce the hypothesis that MTs are active in processing light information, and that these genes are regulated by the circadian clock and light, thus suggesting that MTs play an important role in daily and circadian variations in the brain and retina of olive flounders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号