首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11768篇
  免费   983篇
  国内免费   6篇
  2023年   33篇
  2022年   95篇
  2021年   242篇
  2020年   172篇
  2019年   213篇
  2018年   337篇
  2017年   328篇
  2016年   494篇
  2015年   674篇
  2014年   792篇
  2013年   879篇
  2012年   1144篇
  2011年   1019篇
  2010年   694篇
  2009年   569篇
  2008年   789篇
  2007年   717篇
  2006年   665篇
  2005年   553篇
  2004年   524篇
  2003年   465篇
  2002年   345篇
  2001年   144篇
  2000年   132篇
  1999年   104篇
  1998年   75篇
  1997年   61篇
  1996年   39篇
  1995年   39篇
  1994年   32篇
  1993年   20篇
  1992年   38篇
  1991年   34篇
  1990年   28篇
  1989年   27篇
  1988年   32篇
  1987年   15篇
  1986年   21篇
  1985年   22篇
  1984年   19篇
  1983年   13篇
  1982年   14篇
  1981年   16篇
  1980年   8篇
  1979年   7篇
  1978年   7篇
  1975年   6篇
  1974年   6篇
  1973年   6篇
  1972年   9篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
151.
A novel 3′,4′-dimethyl-5′-norcarbocyclic adenosine phosphonic acid was prepared using acyclic stereoselective route from 4-hydroxybutan-2-one (4). To improve the cellular permeability and enhance the anti-HIV activity of this phosphonic acid, a (bis)SATE phosphonodiester nucleoside prodrug (20) was prepared and its chemical stability was evaluated. The newly synthesized bis(SATE) analogue (20) and its parent nucleoside phosphonic acid (18) were assayed for anti-HIV activity using an in vitro assay system in a CEM cell line.  相似文献   
152.
Novel vinyl branched apiosyl nucleosides were synthesized in this study. Apiosyl sugar moiety was constructed by sequential ozonolysis and reductions. The bases (uracil and thymine) were efficiently coupled by glycosyl condensation procedure (persilyated base and TMSOTf). The antiviral activities of the synthesized compounds were evaluated against the HIV-1, HSV-1, HSV-2, and HCMV. Compound 10β displayed moderate anti-HIV activity (EC50 = 17.3 μg/mL) without exhibiting any cytotoxicity up to 100 μM.  相似文献   
153.
Dietary restriction (DR) has many beneficial effects, but the detailed metabolic mechanism remains largely unresolved. As diet is essentially related to metabolism, we investigated the metabolite profiles of urines from control and DR animals using NMR and LC/MS metabolomic approaches. Multivariate analysis presented distinctive metabolic profiles and marker signals from glucuronide and glycine conjugation pathways in the DR group. Broad profiling of the urine phase II metabolites with neutral loss scanning showed that levels of glucuronide and glycine conjugation metabolites were generally higher in the DR group. The up-regulation of phase II detoxification in the DR group was confirmed by mRNA and protein expression levels of uridinediphospho-glucuronosyltransferase and glycine-N-acyltransferase in actual liver tissues. Histopathology and serum biochemistry showed that DR was correlated with the beneficial effects of low levels of serum alanine transaminase and glycogen granules in liver. In addition, the Nuclear factor (erythroid-derived 2)-like 2 signaling pathway was shown to be up-regulated, providing a mechanistic clue regarding the enhanced phase II detoxification in liver tissue. Taken together, our metabolomic and biochemical studies provide a possible metabolic perspective for understanding the complex mechanism underlying the beneficial effects of DR.It has been known for more than 70 years that dietary restriction (DR)1 can extend the life span and delay the onset of age-related diseases, based on an early rodent study showing such effects (1). However, not until the 1980s was DR recognized as a good model for studying the mechanism of or inhibitory measures for aging (2). So far, extensive studies employing model organisms such as yeasts, nematodes, fruit flies, and rodents have shown that DR has beneficial effects in most of the species studied (for a review, see Ref. 3). Most notably, a recent 20-year-long study showed that monkeys, the species closest to humans, also benefit from DR similarly (4). Although there has not been (or could not have been) a systematic study on the effects of DR on the human life span, several longitudinal studies strongly suggest that changes in dietary intake can affect the life span and/or disease-associated marker values greatly (57).This inverse correlation between dietary intake and long-term health strongly indicates that DR''s effects should involve metabolism, and that DR elicits the reorganization of metabolic pathways. It also seems quite natural that something we eat should affect the body''s metabolism. Despite this seemingly straightforward relationship between diet and metabolism, the mechanisms underlying the beneficial effects of DR are anything but simple. Intensive efforts, spanning decades, to understand the mechanisms of DR have identified several genes that might mediate the effects of DR, such as mTOR, IGF-1, AMPK, and SIRT1 (for a review, see Ref. 8). Still, most of them are involved in early nutrient-sensing steps, and specific metabolic pathways, especially those at the final steps actually responsible for the effects of DR, are largely unknown.This might be at least partially due to the fact that previous studies have focused mostly on genomic or proteomic changes induced by DR, instead of looking at changes in metabolism or metabolites directly. Metabolomics, which has gained much interest in recent years (911), might be a good alternative for addressing the mechanistic uncertainty of DR''s effects, with the direct profiling of metabolic changes elicited by environmental factors. In contrast to genomics or proteomics, which often employ DNA or proteins extracted from particular tissues, metabolomics studies mostly employ body fluids (i.e. urine or blood), which can reflect the metabolic status of multiple organs, enabling investigations at a more systemic level. In particular, urine has been used extensively to study the mechanism of external stimuli (i.e. drugs or toxic insults) at most major target organs, such as the lung, kidney, liver, or heart (1218). Still, metabolomics studies of DR effects have been very limited. A few previous ones reported the changes in phenomenological urine metabolic markers with DR, without identification and/or validation of specific metabolic pathways reflected at the actual tissue or enzyme level (19, 20). Therefore, those studies fell short of providing a mechanistic perspective on DR''s effects. In addition, they employed either NMR or LC/MS approaches without validation across the two analytical platforms.Among the metabolic pathways that can directly affect the integrity of multiple organs, and hence long-term health, are phase II detoxification pathways (21). Typically, lipophilic endo/xenobiotics are metabolized first by a phase I system, such as cytochrome P450, which modifies the compounds so that they have hydrophilic functional groups for increased solubility. In many cases, though, these modifications might increase the reactivity of the compounds, leading to cellular damage. The phase II detoxification systems involve conjugation reactions that attach charged hydrophilic molecular moieties to reactive metabolites, thus facilitating the elimination of the harmful metabolites from body, ultimately reducing their toxicity (22). These systems are thus especially important in protecting cellular macromolecules, such as DNA and proteins, from reactive electrophilic or nucleophilic metabolites. The enzymes involved in these processes include glutathione-S-transferase (GST), sulfotransferase, glycine-N-acyltransferase (GLYAT), and uridinediphospho-glucuronosyltransferase (UGT), with the last enzyme being the most prevalent (23). The beneficial effects of phase II reactions have been particularly studied in relation to the mechanism of healthy dietary ingredients. It is well believed that many such foods can prevent cancers (hence the term “chemoprevention”) by inducing phase II detoxification systems (2426). Although DR also substantially reduces the incidence of cancers, the exact mechanism remains elusive.Here, we employed multi-platform metabolomics to obtain metabolic perspectives on the beneficial effects of DR on rats. Our results about urine metabolomics markers suggest that DR enhances the phase II detoxification pathway, which was confirmed by means of conjugation metabolite profiling and changes in mRNA/protein expression levels of phase II enzymes in actual liver tissues. A possible molecular mechanism was also addressed through the exploration of Nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) pathway activation upon DR. We believe the current study provides new metabolic insights into DR''s beneficial effects, as well as a workflow for studying DR''s effects from a metabolic perspective.  相似文献   
154.
Three, six, nine, and twelve V of electric pulse (EP) was applied to a culture of Weissella cibaria SKkimchi1 in MRS medium and kimchi-making culture (KMC). Viable cell number of SKkimchi1 in MRS medium was decreased in proportion to pulse intensity but that of bacteria in KMC was not. Lactic acid and ethanol produced by SKkimchi1 tended to be decreased in proportion to EP intensity but acetic acid was proportionally increased to EP intensity. Lactic acid, ethanol, and propionic acid produced in KMC were proportionally decreased, but acetic acid was proportionally increased to the EP intensity. Bacterial community and diversity in KMC were analyzed based on culture time by a temperature gradient gel electrophoresis (TGGE) technique. Most bacterial communities grown in freshly prepared kimchi belonged to Bacillus genus. Lactic acid bacteria responsible for kimchi fermentation began to grow on day 4, and were completely substituted for Bacillus genus on day 8, but some Bacillus genus began to grow again on day 12. However, bacterial community diversities were not different based on varying EP intensity.  相似文献   
155.
This study investigated the effect of glutamate decarboxylase from Neurospora crassa OR74A on GABA production in Escherichia coli. GABA is one of the inhibitory neurotransmitters in the mammalian central nervous system, and can be used as a precursor of promising biopolymer Nylon 4. E. coli that overexpressed N. crassa glutamate decarboxylase was cultured at various pH levels and temperatures to determine optimum conditions for GABA production. When the recombinant E. coli strain was cultured at 30°C and pH 3, a final GABA concentration of 5.26 g/L was obtained from 10 g/L of monosodium glutamate (MSG), corresponding to a GABA yield of 86.23%.  相似文献   
156.
157.
Single use culture systems are a tool in research and biotechnology manufacturing processes and are employed in mammalian cell-based manufacturing processes. Recently, we characterized a novel bioreactor system developed by PBS Biotech. The Pneumatic Bioreactor System? (PBS) employs the Air-wheel?, which is a mixing device similar in structure to a water wheel but is driven by the buoyant force of gas bubbles. In this study, we investigated the physical properties of the PBS system, with which we performed biological tests. In 2 L PBS, the mixing times ranged from 6 (30 rpm, 0.175 vvm) to 15 sec (10 rpm, 0.025 vvm). The kLa value reached upto 7.66/h at 0.5 vvm, even without a microsparger, though this condition is not applicable for cell cultures. Also, when a 10 L PBS equipped with a microsparger was evaluated, a kLa value of upto approximately 20/h was obtained particularly in mild cell culture conditions. We performed cultivation of Chinese hamster ovary (CHO) cells in 2 and 10 L PBS prototypes. Results from the PBS were compared with those from an Erlenmeyer flask and conventional stirred tank type bioreactor (STR). The maximum cell density of 10.6 × 106 cells/mL obtained fromthe 2 L PBSwas about 2 times higher than that from the Erlenmeyer flask (5.6 × 106 cells/mL) andwas similar to the STR (9.7 × 106 cells/mL) when the CHO-S cells were cultured. These results support the general suitability of the PBS system using pneumatic mixing for suspension cell cultivation as a novel single-use bioreactor system.  相似文献   
158.
159.
DNA fragmentation is common phenomenon for apoptotic cell death. DNA fragmentation factor, called DFF40 (CAD: mouse homologue), is a main nuclease for apoptotic DNA fragmentation. Nuclease activity of DFF40 is normally inhibited by DFF45 by tight interaction via CIDE domain without apoptotic stimuli. Once effector caspase is activated during apoptosis signaling, it cleave DFF45, allowing DFF40 to enter the nucleus and cleave chromosomal DNA. Unlike mammalian system, apoptotic DNA fragmentation in the fly might be controlled by four DFF-related proteins, known as Drep1, Drep2, Drep3 and Drep4. Although the function of Drep1 and Drep4 is well known as DFF45 and DFF40 homologues, respectively, the function of Drep2 and Drep3 is still unclear. DFF-related proteins contain a conserved CIDE domain of ~90 amino acid residues that is involved in protein–protein interaction. Here, we showed that Drep1 directly bind to Drep2 as well as Drep4 via CIDE domain. In addition, we found that the interaction of Drep2 and Drep4 to Drep1 was not competitive indicating that Drep2 and Drep4 bind different place of Drep1. All together, we suggest that Drep1 might be involved in apoptotic DNA fragmentation of fly system by direct interaction with Drep2 as well as Drep4.  相似文献   
160.
Silkworm hemolymph (SH) was found to exhibit anti-apoptotic activities in mammalian and insect cell systems. An anti-apoptotic mechanism of SH was investigated in a staurosporine-induced HeLa cell using flow cytometry, caspase assay, Immunoblot, and Immunochemistry. The addition of 5% SH to the medium resulted in lower intracellular activities of caspase-3 and caspase-9 after 0.6 μM of staurosporine treatment; however, SH did not directly inhibit the activities of those enzymes. This suggests SH inhibits the event upstream of these caspase activation steps, such as mitochondrial level events. We found from Immunoblot and Immunochemistry that cytochrome c release from the mitochondria was blocked by SH. SH also inhibited Bax translocation to the mitochondria. On the contrary, SH did not block the apoptosis when Bax is not involved in promoting apoptosis. With these results, we propose that SH protects mitochondria from apoptosis signal via blocking Bax translocation, and the subsequent apoptotic events are then inhibited. The inhibition of apoptosis using SH and its components may lead to new approaches for the minimization of cell death during commercial animal cell cultures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号