首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52417篇
  免费   16944篇
  国内免费   1653篇
  2024年   36篇
  2023年   203篇
  2022年   384篇
  2021年   1210篇
  2020年   2675篇
  2019年   4340篇
  2018年   4507篇
  2017年   4690篇
  2016年   5045篇
  2015年   5448篇
  2014年   5465篇
  2013年   5980篇
  2012年   4267篇
  2011年   3875篇
  2010年   4506篇
  2009年   3019篇
  2008年   2439篇
  2007年   1844篇
  2006年   1665篇
  2005年   1611篇
  2004年   1501篇
  2003年   1337篇
  2002年   1145篇
  2001年   863篇
  2000年   714篇
  1999年   535篇
  1998年   263篇
  1997年   209篇
  1996年   144篇
  1995年   125篇
  1994年   99篇
  1993年   74篇
  1992年   128篇
  1991年   98篇
  1990年   68篇
  1989年   79篇
  1988年   55篇
  1987年   38篇
  1986年   31篇
  1985年   40篇
  1984年   28篇
  1983年   24篇
  1982年   23篇
  1981年   17篇
  1980年   15篇
  1979年   17篇
  1978年   18篇
  1975年   16篇
  1974年   14篇
  1972年   12篇
排序方式: 共有10000条查询结果,搜索用时 406 毫秒
991.
992.
A study was performed to assess the preference of fourteen mango cultivars for fruit flies and their management by bagging. So the choice of Tephritid flies to mango cultivars during fruiting phase is crucial. Fourteen different cultivars of mango viz., ‘Dusehri’, ‘Malda’, ‘Langra’ early cultivars, ‘Chaunsa’, ‘Fajri Klan’, ‘Sensation’ medium whereas ‘Sanglakhi’, ‘Retaul-12’, ‘Mehmood Khan’, ‘Tukhmi’, ‘Kala Chaunsa’, ‘Chitta Chaunsa’, ‘Dai Wala’ and ‘Sobey De Ting’ late cultivars were assessed for their suitability for fruit flies. The results indicate that the population density of fruit flies was higher on late cultivars like ‘Sanglakhi’ (20.61 percent), ‘Mehmood Khan’ (20.22 percent) and ‘Reutal-12’ (19.92 percent) were proved to be highly susceptible to fruit flies. Among these the cultivar ‘Reutal-12’ was selected being commercial and future cultivar for the management of fruit flies through bagging. The results reported that the attack of tephritid fruit flies and other insect pests were zero in bagged fruits as compared with control. It was further recorded that the bagged fruits has maximum average fruit weight i.e. 203.50 and 197.83 g per fruit was noted in those treatments where butter paper bag and brown paper bag was wrapped with better coloration as compared with un-bagged fruit with 159.5 g per fruit. Similarly, on an average fruit length were more i.e. 90.17, 91.33 mm in bagged fruit and 85.33 in un-bagged fruits. Furthermore, bagged fruits have zero incidence of disease with reduced fruit crack, fruit sunburn, mechanical damage, bird damage, fruit blemished and agrochemical residues on the fruit. So, it is concluded that the special attention should be given on ‘Reutal-12’ for the management of fruit flies when devising an IPM program for the control of fruit flies. Further, bagging has proved to be the good agricultural practices for the production of quality mango.  相似文献   
993.
Wood growth constitutes the main process for long‐term atmospheric carbon sequestration in vegetation. However, our understanding of the process of wood growth and its response to environmental drivers is limited. Current dynamic global vegetation models (DGVMs) are mainly photosynthesis‐driven and thus do not explicitly include a direct environmental effect on tree growth. However, physiological evidence suggests that, to realistically model vegetation carbon allocation under increased climatic stressors, it is crucial to treat growth responses independently from photosynthesis. A plausible growth response function suitable for global simulations in DGVMs has been lacking. Here, we present the first soil water‐growth response function and parameter range for deciduous and evergreen conifers. The response curve was calibrated against European larch and Norway spruce in a dry temperate forest in the Swiss Alps. We present a new data‐driven approach based on a combination of tree ring width (TRW) records, growing season length and simulated subdaily soil hydrology to parameterize ring width increment simulations. We found that a simple linear response function, with an intercept at zero moisture stress, used in growth simulations reproduced 62.3% and 59.4% of observed TRW variability for larch and spruce respectively and, importantly, the response function slope was much steeper than literature values for soil moisture effects on photosynthesis and stomatal conductance. Specifically, we found stem growth stops at soil moisture potentials of ?0.47 MPa for larch and ?0.66 MPa for spruce, whereas photosynthesis in trees continues down to ?1.2 MPa or lower, depending on species and measurement method. These results are strong evidence that the response functions of source and sink processes are indeed very different in trees, and need to be considered separately to correctly assess vegetation responses to environmental change. The results provide a parameterization for the explicit representation of growth responses to soil water in vegetation models.  相似文献   
994.
Tropical ecosystems are under increasing pressure from land‐use change and deforestation. Changes in tropical forest cover are expected to affect carbon and water cycling with important implications for climatic stability at global scales. A major roadblock for predicting how tropical deforestation affects climate is the lack of baseline conditions (i.e., prior to human disturbance) of forest–savanna dynamics. To address this limitation, we developed a long‐term analysis of forest and savanna distribution across the Amazon–Cerrado transition of central Brazil. We used soil organic carbon isotope ratios as a proxy for changes in woody vegetation cover over time in response to fluctuations in precipitation inferred from speleothem oxygen and strontium stable isotope records. Based on stable isotope signatures and radiocarbon activity of organic matter in soil profiles, we quantified the magnitude and direction of changes in forest and savanna ecosystem cover. Using changes in tree cover measured in 83 different locations for forests and savannas, we developed interpolation maps to assess the coherence of regional changes in vegetation. Our analysis reveals a broad pattern of woody vegetation expansion into savannas and densification within forests and savannas for at least the past ~1,600 years. The rates of vegetation change varied significantly among sampling locations possibly due to variation in local environmental factors that constrain primary productivity. The few instances in which tree cover declined (7.7% of all sampled profiles) were associated with savannas under dry conditions. Our results suggest a regional increase in moisture and expansion of woody vegetation prior to modern deforestation, which could help inform conservation and management efforts for climate change mitigation. We discuss the possible mechanisms driving forest expansion and densification of savannas directly (i.e., increasing precipitation) and indirectly (e.g., decreasing disturbance) and suggest future research directions that have the potential to improve climate and ecosystem models.  相似文献   
995.
Clavija domingensis Urb. & Ekman was one of the many Haitian endemics that were described based on collections made by the great Swedish botanist Leonard Ekman between 1924 and 1928. The species is Critically Endangered sensu IUCN (criteria c2a(i); D) and it is currently the focus of conservation initiatives in Jardin Botanique des Cayes (Haiti), Jardín Botánico Nacional Dr. Rafael M. Moscoso (Dominican Republic), and Fairchild Tropical Botanic Garden (U.S.A.). Now known from only six localities from southern Haiti, each locality only represents a single individual. The species is illustrated based on plants grown in Fairchild Tropical Botanic Garden.  相似文献   
996.
997.
998.
Three case studies involving two temperate Australian seagrass species – Pondweed (Ruppia tuberosa) and Ribbon Weed (Posidonia australis) – highlight different approaches to their restoration. Seeds and rhizomes were used in three collaborative programmes to promote new approaches to scale up restoration outcomes.  相似文献   
999.
Extreme weather events have become a dominant feature of the narrative surrounding changes in global climate with large impacts on ecosystem stability, functioning and resilience; however, understanding of their risk of co‐occurrence at the regional scale is lacking. Based on the UK Met Office’s long‐term temperature and rainfall records, we present the first evidence demonstrating significant increases in the magnitude, direction of change and spatial co‐localisation of extreme weather events since 1961. Combining this new understanding with land‐use data sets allowed us to assess the likely consequences on future agricultural production and conservation priority areas. All land‐uses are impacted by the increasing risk of at least one extreme event and conservation areas were identified as the hotspots of risk for the co‐occurrence of multiple event types. Our findings provide a basis to regionally guide land‐use optimisation, land management practices and regulatory actions preserving ecosystem services against multiple climate threats.  相似文献   
1000.
Diversifying agricultural landscapes may mitigate biodiversity declines and improve pest management. Yet landscapes are rarely managed to suppress pests, in part because researchers seldom measure key variables related to pest outbreaks and insecticides that drive management decisions. We used a 13‐year government database to analyse landscape effects on European grapevine moth (Lobesia botrana) outbreaks and insecticides across c. 400 Spanish vineyards. At harvest, we found pest outbreaks increased four‐fold in simplified, vineyard‐dominated landscapes compared to complex landscapes in which vineyards are surrounded by semi‐natural habitats. Similarly, insecticide applications doubled in vineyard‐dominated landscapes but declined in vineyards surrounded by shrubland. Importantly, pest population stochasticity would have masked these large effects if numbers of study sites and years were reduced to typical levels in landscape pest‐control studies. Our results suggest increasing landscape complexity may mitigate pest populations and insecticide applications. Habitat conservation represents an economically and environmentally sound approach for achieving sustainable grape production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号