首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   2篇
  2020年   2篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2010年   2篇
  2009年   2篇
  2005年   2篇
  2003年   2篇
  2001年   3篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1989年   3篇
  1986年   3篇
  1977年   2篇
  1961年   1篇
  1960年   4篇
  1959年   2篇
  1957年   2篇
  1956年   1篇
  1955年   1篇
  1953年   3篇
  1952年   1篇
  1947年   2篇
  1945年   1篇
  1940年   2篇
  1939年   1篇
  1938年   4篇
  1937年   2篇
  1936年   9篇
  1935年   5篇
  1934年   2篇
  1933年   8篇
  1932年   9篇
  1931年   9篇
  1930年   2篇
  1929年   7篇
  1927年   1篇
  1926年   1篇
  1924年   2篇
  1923年   3篇
  1922年   1篇
  1920年   2篇
  1919年   1篇
  1918年   3篇
  1916年   1篇
  1914年   1篇
  1910年   2篇
  1909年   1篇
  1907年   1篇
排序方式: 共有149条查询结果,搜索用时 314 毫秒
141.
142.
143.
144.
145.
146.
BackgroundVitamin B12 deficiency is common and affects cell division and differentiation, erythropoiesis, and the central nervous system. Several observational studies have demonstrated associations between biomarkers of vitamin B12 status with growth, neurodevelopment, and anemia. The objective of this study was to measure the effects of daily supplementation of vitamin B12 for 1 year on neurodevelopment, growth, and hemoglobin concentration in infants at risk of deficiency.Methods and findingsThis is a community-based, individually randomized, double-blind placebo-controlled trial conducted in low- to middle-income neighborhoods in Bhaktapur, Nepal. We enrolled 600 marginally stunted, 6- to 11-month-old infants between April 2015 and February 2017. Children were randomized in a 1:1 ratio to 2 μg of vitamin B12, corresponding to approximately 2 to 3 recommended daily allowances (RDAs) or a placebo daily for 12 months. Both groups were also given 15 other vitamins and minerals at around 1 RDA. The primary outcomes were neurodevelopment measured by the Bayley Scales of Infant and Toddler Development 3rd ed. (Bayley-III), attained growth, and hemoglobin concentration. Secondary outcomes included the metabolic response measured by plasma total homocysteine (tHcy) and methylmalonic acid (MMA). A total of 16 children (2.7%) in the vitamin B12 group and 10 children (1.7%) in the placebo group were lost to follow-up. Of note, 94% of the scheduled daily doses of vitamin B12 or placebo were reported to have been consumed (in part or completely). In this study, we observed that there were no effects of the intervention on the Bayley-III scores, growth, or hemoglobin concentration. Children in both groups grew on an average 12.5 cm (SD: 1.8), and the mean difference was 0.20 cm (95% confidence interval (CI): −0.23 to 0.63, P = 0.354). Furthermore, at the end of the study, the mean difference in hemoglobin concentration was 0.02 g/dL (95% CI: −1.33 to 1.37, P = 0.978), and the difference in the cognitive scaled scores was 0.16 (95% CI: −0.54 to 0.87, P = 0.648). The tHcy and MMA concentrations were 23% (95% CI: 17 to 30, P < 0.001) and 30% (95% CI: 15 to 46, P < 0.001) higher in the placebo group than in the vitamin B12 group, respectively. We observed 43 adverse events in 36 children, and these events were not associated with the intervention. In addition, 20 in the vitamin B12 group and 16 in the placebo group were hospitalized during the supplementation period. Important limitations of the study are that the strict inclusion criteria could limit the external validity and that the period of vitamin B12 supplementation might not have covered a critical window for infant growth or brain development.ConclusionsIn this study, we observed that vitamin B12 supplementation in young children at risk of vitamin B12 deficiency resulted in an improved metabolic response but did not affect neurodevelopment, growth, or hemoglobin concentration. Our results do not support widespread vitamin B12 supplementation in marginalized infants from low-income countries.Trial registrationClinicalTrials.gov NCT02272842Universal Trial Number: U1111-1161-5187 (September 8, 2014)Trial Protocol: Original trial protocol: PMID: 28431557 (reference [18]; study protocols and plan of analysis included as Supporting information).

Tor A. Strand and colleagues measure the effects of daily supplementation of vitamin B12 for one year on neurodevelopment, growth, and hemoglobin concentration in infants at risk of deficiency.  相似文献   
147.
148.
Leptin and adiponectin play an essential role in energy metabolism. Leptin has also been proposed as a marker for monitoring training load. So far, no studies have investigated the variability of these hormones in athletes and how they are regulated during cumulative exercise. This study monitored leptin and adiponectin in 15 endurance athletes twice daily in the days before, during and after a 9-day simulated cycling stage race. Adiponectin significantly increased during the race (p = 0.001) and recovery periods (p = 0.002) when compared to the baseline, while leptin decreased significantly during the race (p < 0.0001) and returned to baseline levels during the recovery period. Intra-individual variability was substantially lower than inter-individual variability for both hormones (leptin 34.1 vs. 53.5%, adiponectin 19% vs. 37.2%). With regards to exercise, this study demonstrated that with sufficient, sustained energy expenditure, leptin concentrations can decrease within the first 24 hours. Under the investigated conditions there also appears to be an optimal leptin concentration which ensures stable energy homeostasis, as there was no significant decrease over the subsequent race days. In healthy endurance athletes the recovery of leptin takes 48-72 hours and may even show a supercompensation-like effect. For adiponectin, significant increases were observed within 5 days of commencing racing, with these elevated values failing to return to baseline levels after 3 days of recovery. Additionally, when using leptin and adiponectin to monitor training loads, establishing individual threshold values improves their sensitivity.  相似文献   
149.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号