首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   617篇
  免费   56篇
  2022年   4篇
  2021年   7篇
  2020年   7篇
  2019年   7篇
  2018年   8篇
  2017年   5篇
  2016年   15篇
  2015年   25篇
  2014年   35篇
  2013年   24篇
  2012年   35篇
  2011年   34篇
  2010年   23篇
  2009年   31篇
  2008年   38篇
  2007年   37篇
  2006年   28篇
  2005年   20篇
  2004年   34篇
  2003年   32篇
  2002年   21篇
  2001年   24篇
  2000年   24篇
  1999年   19篇
  1998年   2篇
  1997年   5篇
  1996年   7篇
  1995年   5篇
  1994年   2篇
  1992年   8篇
  1991年   3篇
  1990年   4篇
  1989年   11篇
  1988年   8篇
  1987年   9篇
  1986年   13篇
  1985年   9篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   5篇
  1978年   5篇
  1977年   7篇
  1975年   4篇
  1972年   2篇
  1971年   1篇
  1968年   2篇
  1965年   1篇
排序方式: 共有673条查询结果,搜索用时 843 毫秒
561.
The deacylation-reacylation process has been shown to be an important pathway for phospholipids to attain the desired acyl groups at the C-2 position. The acylation of 1-acyl-glycerophosphocholine (-GPC) in mammalian hearts has been well documented, but the acylation of 1-alkenyl-GPC has not been described. In this paper, we demonstrate the presence of acyl-CoA: 1-alkenyl-GPC acyltransferase for the acylation of 1-alkenyl-GPC in mammalian hearts; the highest activity is found in guinea pig heart. The guinea pig heart 1-alkenyl-GPC acyltransferase has only 10-40% of the 1-acyl-GPC acyltransferase activity, and both activities are located in the microsomal fraction. However, these two enzymes respond differently to cations, detergents and heat treatment, and the two enzymes also display different acyl specificity. Kinetic studies indicate that both reactions could not be accommodated by the same catalytic site. The results provide strong evidence that the two activities are from separate and distinct proteins. The specificity of 1-alkenyl-GPC acyltransferase for unsaturated species of acyl-CoA may play an important role in the maintenance of the high degree of unsaturated acyl groups found in guinea pig heart plasmalogens.  相似文献   
562.
In order to better define antiinflammatory activity in new agents, a test was devised utilizing both carrageenan induced paw edema and the reversed passive Arthus reaction in the same animal. The model of carrageenan induced rat paw edema is a standard laboratory assay used to predict classical "aspirin-like" antiinflammatory molecules. The reversed passive cutaneous Arthus reaction involves precipitating antigen-antibody complexes, complement and infiltrating polymorphonuclear leukocytes (PMN's) and can be used to identify agents that affect one or more of these factors specifically. Antiinflammatory compounds were given orally one hour prior to the administration of carrageenan and goat anti-rat serum. Comparisons were made between several non-steroidal compounds and the steroid hydrocortisone. All of the compounds tested gave good carrageenan activity, but only hydrocortisone produced significant Arthus lesion inhibition in this assay.  相似文献   
563.
The importance of the deacylation-reacylation pathway for attaining the desired fatty acid composition in microsomal phospholipids has been well established. It is not clear, however, whether this mechanism is of equal importance in mitochondria. The absence of acyltransferase activity in mammalian heart mitochondria has been reported in a number of studies. In the present study we report the presence of acyltransferase activities for lysophosphoradylglycerocholines in guinea-pig heart mitochondria. This enzyme showed properties that were considerably different from those of the microsomal enzymes. Of all the acyl-CoAs tested (C18:0, C18:1, C18:2 and C20:4) the mitochondrial enzyme utilized only linoleoyl-CoA as fatty acyl donor and utilized both 1-acyl-sn-glycero-3-phosphocholine and 1-alkenyl-sn-glycero-3-phosphocholine as fatty acyl acceptors. The presence of significant quantities of fatty acids other than linoleate at the C-2 position of mitochondrial acylglycerophosphocholines, coupled with the specificity of the enzyme for linoleoyl-CoA, suggest that, in addition to reacylation, other mechanisms play a significant role in producing the molecular composition of these phospholipids found in the mitochondria.  相似文献   
564.
The aims of this study were to (i) elucidate the biosynthetic pathways for the formation of plasmenylcholine in the mammalian heart and (ii) investigate whether the control of choline glycerophospholipid production is different in hearts with high plasmenylcholine content. Guinea pig hearts were used throughout this study, since 34% of the cardiac choline glycerophospholipids in this species is present in the plasmenylcholine form. By perfusion of the guinea pig heart in the Langendorff mode with labeled choline, we demonstrated that the majority of plasmenylcholine in the heart was synthesized via the CDP-choline pathway. The ability of the heart to form plasmenylcholine from CDP-choline and 1-alkenyl-2-acylglycerol was also shown. We postulate that 1-alkenyl-2-acylglycerol in the guinea pig heart might originate from the hydrolysis of plasmenylethanolamine. In mammalian liver and other tissues, the CDP-choline pathway is the major pathway for phosphatidylcholine biosynthesis and the rate-limiting step is catalyzed by CTP:phosphocholine cytidylyltransferase. The results obtained from the present study support this supposition. In addition, evidence was obtained indicating that phosphorylation of choline by choline kinase in the CDP-choline pathway may also be rate limiting. Although the involvement of choline kinase as a rate-limiting enzyme in the CDP-choline pathway has been shown in a number of cell cultures, the rate-limiting role of this enzyme in intact mammalian organs has not been previously reported. The rationale for the presence of more than one rate-limiting step in the CDP-choline pathway in the guinea pig heart remains undefined.  相似文献   
565.
566.
Partial hydrolysis and methylation studies have been used to show that the capsular polysaccharide of Klebsiella K-type 20 is composed of a main chain of d-mannose and d-galactose units with the aldobiouronic acid attached as a side chain to d-mannose  相似文献   
567.
1. The inhibition of incorporation of 14C-labelled amino acids into protein of whole cells by phenylalanine has been reproduced in a cell-free system. In both cases only the l-isomer was inhibitory. 2. The effect of phenylalanine on incorporation of [14C]leucine and [14C]lysine into protein was different in both whole cells and cell-free systems. 3. In whole cells inhibition of incorporation of leucine at 2·5μg./ml. was very rapid, but when the concentration was increased to 100μg./ml. the inhibition was not apparent for about 1hr. The kinetics of inhibition of lysine was the same at both these concentrations and was similar to that found with leucine at 100μg./ml. 4. Neither a lower specific radioactivity of the two amino acids in the pool nor a decrease in their pool size could be consistently related with inhibition of protein synthesis. 5. In the cell-free system l-phenylalanine inhibited the incorporation of leucine but not of lysine. 6. Charging of transfer RNA by leucine was markedly decreased in the presence of phenylalanine, whereas charging of transfer RNA by lysine was not.  相似文献   
568.
Summary Sections of the hypothalamus, median eminence and pituitary from fetal and neonatal rats were examined with the immunoperoxidase staining technique and light microscopy. Purified antisera raised against vasopressin and oxytocin, and antisera cross-reactive with rat neurophysin were used to localize these antigens in the hypothalamo-neurohypophysial system (HNS). Neurophysin was detected throughout the HNS of the 18-day fetal rat. Vasopressin was present in the hypothalamus and pituitary of the 19-day fetus, and in the median eminence of the 4-day neonate. Oxytocin was not detected in the pituitary until 1–2 days after birth, in the hypothalamus after 4 days, and in the median eminence after 8 days. During the first days after birth the supraoptic nucleus was more mature than the paraventricular nucleus. The HNS did not approach maturity until at least 7 days after birth. The relative maturity of the supraoptic nucleus compared with the paraventricular nucleus, and the detection of vasopressin before oxytocin are evidence for the one-neuron-one-hormone theory. The data do not exclude the possibility that the fetal hypothalamo-neurohypophysial system, and perhaps the fetal hormone, vasotocin, affect the initiation and course of parturition.This work was financed by the Medical Research Council of New Zealand  相似文献   
569.
Concanavalin A (ConA), normally a mitogen of T lymphocytes, was found to induce apoptosis or programmed cell death in murine peritoneal macrophages. The following observations support this assertion: 1) incubation of peritoneal macrophages or cultured PU5-1.8 macrophage cells with ConA caused a dose- and time-dependent reduction of mitochondrial dehy-drogenase activity as measured by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, 2) treatment of cells with ConA induced formation of apoptotic bodies as seen under the confocal laser scanning microscope, 3) challenge of cells with ConA produced a considerable amount of cell debris with DNA content next to G0 phase as revealed by flow cytometry and 4) ConA was able to elicit DNA fragmentation in these cells. The involvement of Ca(2+) in mediating the apoptosis was studied in single cells by confocal laser scanning microscope using the Ca(2+) fluorescence dye, fluo-3. Our results show that ConA induced an immediate rise of intracellular free Ca(2+) concentration as well as opening of Ca(2+) channels on cell surface. But when the cells were treated with 1,2-bis(o-aminophenoxy) ethane-N, N, N', N'-tetraacetic acid/AM (BAPTA/AM), a Ca(2+) chelator, to buffer the rise of internal Ca(2+), ConA still caused DNA fragmentation. Furthermore, injection of Ca(2+) into the cell with ionomycin had no stimulatory effect on DNA fragmentation. These results suggest that Ca(2+) changes induced by ConA are not a prerequisite for apoptosis in macrophages.  相似文献   
570.
Adipsin and an endogenous pathway of complement from adipose cells.   总被引:8,自引:0,他引:8  
The alternative complement pathway is best known for its role in humoral suppression of infectious agents. We have previously shown that adipose cells synthesize adipsin, the mouse homolog of human complement factor D, and that the synthesis of this protein is reduced in several rodent models of obesity. We show here that adipose cells and adipose tissue also synthesize two other essential components of the alternative pathway of complement, factors C3 and B, and activate the proximal portion of this pathway. This activation occurs in the absence of infectious agents and without triggering the terminal, lytic part of this pathway. We demonstrate the production in vitro of several polypeptides characteristic of complement activation that are known to have potent biological activities, including the anaphylatoxin C3a. Cultured adipocytes require stimulation with cytokines to activate complement, while explanted adipose tissue has no such requirement. The adipose tissue from obese mice is deficient in this localized activation of the alternative pathway. These results indicate that complement activation occurs in a localized site, adipose tissue, in normal mice and is impaired in a state of metabolic dysfunction. This suggests a novel function for the proximal portion of this complement pathway related to adipose cell biology or energy balance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号