首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3762篇
  免费   324篇
  国内免费   213篇
  2024年   4篇
  2023年   28篇
  2022年   68篇
  2021年   134篇
  2020年   88篇
  2019年   104篇
  2018年   108篇
  2017年   86篇
  2016年   133篇
  2015年   217篇
  2014年   252篇
  2013年   283篇
  2012年   347篇
  2011年   292篇
  2010年   188篇
  2009年   194篇
  2008年   235篇
  2007年   216篇
  2006年   169篇
  2005年   152篇
  2004年   151篇
  2003年   123篇
  2002年   127篇
  2001年   84篇
  2000年   79篇
  1999年   79篇
  1998年   37篇
  1997年   21篇
  1996年   20篇
  1995年   29篇
  1994年   24篇
  1993年   17篇
  1992年   25篇
  1991年   25篇
  1990年   20篇
  1989年   31篇
  1988年   8篇
  1987年   10篇
  1986年   10篇
  1985年   12篇
  1984年   6篇
  1983年   7篇
  1982年   6篇
  1981年   4篇
  1979年   4篇
  1977年   6篇
  1976年   4篇
  1975年   3篇
  1974年   8篇
  1973年   3篇
排序方式: 共有4299条查询结果,搜索用时 31 毫秒
91.
Microwave-assisted extraction (MAE) has emerged as an efficient extraction technique for various kinds of biological samples due to its low usage of extraction solvents and shorter extraction time. This review will focus on the recent developments and advantages of incorporating MAE in sample preparation protocols for the analysis of small molecules in plant, food and clinical samples in recent years. The operating principles of this technique and the key parameters influencing its extraction efficiency, including the nature of solvent, temperature, power and extraction time and their limitations are first mentioned. This is followed by a discussion on the advantages of applying MAE to extract organic contaminants in food for routine food safety analysis and active ingredients recovery. The successful application of MAE technique to recover bioactive compounds from plants in drug discovery studies and quality control purposes is then described. Additionally, the feasibility of using green solvents such as water, micelle and ionic liquids with MAE for plant metabolite profiling studies is evaluated and the associated challenges discussed. Finally, the application of MAE in clinical samples is highlighted. The use of MAE in this field is currently limited to the targeted detection of small molecules in human samples, due to a lack of knowledge of its effects on thermally labile metabolites. Consequently, the need for additional studies on how MAE impacts the recoveries of different metabolite classes in mammalian samples is discussed. The outcome of these studies can potentially broaden MAE applications in the clinical field.  相似文献   
92.
During the last decade, an increasing number of papers have described the use of various genera of bacteria, including E. coli and S. typhimurium, in the treatment of cancer. This is primarily due to the facts that not only are these bacteria capable of accumulating in the tumor mass, but they can also be engineered to deliver specific therapeutic proteins directly to the tumor site. However, a major obstacle exists in that bacteria because the plasmid carrying the therapeutic gene is not needed for bacterial survival, these plasmids are often lost from the bacteria. Here, we report the development of a balanced-lethal host-vector system based on deletion of the glmS gene in E. coli and S. typhimurium. This system takes advantage of the phenotype of the GlmS mutant, which undergoes lysis in animal systems that lack the nutrients required for proliferation of the mutant bacteria, D-glucosamine (GlcN) or N-acetyl-D-glucosamine (GlcNAc), components necessary for peptidoglycan synthesis. We demonstrate that plasmids carrying a glmS gene (GlmS+p) complemented the phenotype of the GlmS mutant, and that GlmS+p was maintained faithfully both in vitro and in an animal system in the absence of selection pressure. This was further verified by bioluminescent signals from GlmS +pLux carried in bacteria that accumulated in grafted tumor tissue in a mouse model. The signal was up to several hundred-fold stronger than that from the control plasmid, pLux, due to faithful maintenance of the plasmid. We believe this system will allow to package a therapeutic gene onto an expression plasmid for bacterial delivery to the tumor site without subsequent loss of plasmid expression as well as to quantify bioluminescent bacteria using in vivo imaging by providing a direct correlation between photon flux and bacterial number.  相似文献   
93.

Background

Enterovirus 71 (EV71) has caused several epidemics of hand, foot and mouth diseases (HFMD) in Asia. No effective EV71 vaccine is available. A randomized and open-label phase I clinical study registered with ClinicalTrials.gov #NCT01268787, aims to evaluate the safety, reactogenicity and immunogenicity of a formalin-inactivated EV71 vaccine candidate (EV71vac) at 5- and 10-µg doses. In this study we report the cross-neutralizing antibody responses from each volunteer against different subgenotypes of EV71 and CVA16.

Methods

Sixty eligible healthy adults were recruited and vaccinated. Blood samples were obtained on day 0, 21 and 42 and tested against B1, B4, B5, C2, C4A, C4B and CVA16 for cross-neutralizing antibody responses.

Results

The immunogenicity of both 5- and 10- µg doses were found to be very similar. Approximately 45% of the participants had <8 pre-vaccination neutralization titers (Nt) against the B4 vaccine strain. After the first EV71vac immunization, 95% of vaccinees have >4-fold increase in Nt, but there was no further increase in Nt after the second dose. EV71vac induced very strong cross-neutralizing antibody responses in >85% of volunteers without pre-existing Nt against subgenotype B1, B5 and C4A. EV71vac elicited weak cross-neutralizing antibody responses (∼20% of participants) against a C4B and Coxsackie virus A16. Over 90% of vaccinated volunteers did not develop cross-neutralizing antibody responses (Nt<8) against a C2 strain. EV71vac can boost and significantly enhance the neutralizing antibody responses in volunteers who already had pre-vaccination antibodies against EV71 and/or CVA16.

Conclusion

EV71vac is efficient in eliciting cross-neutralizing antibody responses against EV71 subgenotypes B1, B4, B5, and C4A, and provides the rationale for its evaluation in phase II clinical trials.

Trial Registration

ClinicalTrials.gov __NCT01268787  相似文献   
94.
95.
The presence of acetate exceeding 5 g/L is a major concern during E. coli fermentation due to its inhibitory effect on cell growth, thereby limiting high-density cell culture and recombinant protein production. Hence, engineered E. coli strains with enhanced acetate tolerance would be valuable for these bioprocesses. In this work, the acetate tolerance of E. coli was much improved by rewiring its global regulator cAMP receptor protein (CRP), which is reported to regulate 444 genes. Error-prone PCR method was employed to modify crp and the mutagenesis libraries (~3×106) were subjected to M9 minimal medium supplemented with 5–10 g/L sodium acetate for selection. Mutant A2 (D138Y) was isolated and its growth rate in 15 g/L sodium acetate was found to be 0.083 h-1, much higher than that of the control (0.016 h-1). Real-time PCR analysis via OpenArray® system revealed that over 400 CRP-regulated genes were differentially expressed in A2 with or without acetate stress, including those involved in the TCA cycle, phosphotransferase system, etc. Eight genes were chosen for overexpression and the overexpression of uxaB was found to lead to E. coli acetate sensitivity.  相似文献   
96.
International Journal of Primatology - Agonistic intergroup interactions can cause individual costs such as physical injuries, increased physiological stress, and disrupted intragroup social...  相似文献   
97.
Chung  H. H.  Kamar  C. K. A.  Lim  L. W. K.  Liao  Y.  Lam  T. T.  Chong  Y. L. 《Journal of Ichthyology》2020,60(1):90-98
Journal of Ichthyology - The Kottelat rasbora Rasbora hobelmani is a small ray-finned fish categorized under the genus Rasbora in the Cyprinidae family. In this study, the complete mitogenome...  相似文献   
98.
Liu  Rui  Wu  Shuhua  Guo  Chong  Hu  Zhongbo  Peng  Jiangtao  Guo  Ke  Zhang  Xinfan  Li  Jianmin 《Neurochemical research》2020,45(10):2516-2526
Neurochemical Research - Epilepsy is one of the most common diseases of the central nervous system. Recent studies have shown that a variety of inflammatory mediators play a key role in the...  相似文献   
99.
Many computational methods have been developed to discern intratumor heterogeneity (ITH) using DNA sequence data from bulk tumor samples. These methods share an assumption that two mutations arise from the same subclone if they have similar mutant allele-frequencies (MAFs), and thus it is difficult or impossible to distinguish two subclones with similar MAFs. Single-cell DNA sequencing (scDNA-seq) data can be very informative for ITH inference. However, due to the difficulty of DNA amplification, scDNA-seq data are often very noisy. A promising new study design is to collect both bulk and single-cell DNA-seq data and jointly analyze them to mitigate the limitations of each data type. To address the analytic challenges of this new study design, we propose a computational method named BaSiC (B ulk tumor a nd Si ngle C ell), to discern ITH by jointly analyzing DNA-seq data from bulk tumor and single cells. We demonstrate that BaSiC has comparable or better performance than the methods using either data type. We further evaluate BaSiC using bulk tumor and single-cell DNA-seq data from a breast cancer patient and several leukemia patients.  相似文献   
100.
In the initial step of sugar metabolism, sugar-specific transporters play a decisive role in the passage of sugars through plasma membranes into cytoplasm. The SecY complex (SecYEG) in bacteria forms a membrane channel responsible for protein translocation. The present work shows that permeabilized SecY channels can be used as nonspecific sugar transporters in Escherichia coli. SecY with the plug domain deleted allowed the passage of glucose, fructose, mannose, xylose, and arabinose, and, with additional pore-ring mutations, facilitated lactose transport, indicating that sugar passage via permeabilized SecY was independent of sugar stereospecificity. The engineered E. coli showed rapid growth on a wide spectrum of monosaccharides and benefited from the elimination of transport saturation, improvement in sugar tolerance, reduction in competitive inhibition, and prevention of carbon catabolite repression, which are usually encountered with native sugar uptake systems. The SecY channel is widespread in prokaryotes, so other bacteria may also be engineered to utilize this system for sugar uptake. The SecY channel thus provides a unique sugar passageway for future development of robust cell factories for biotechnological applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号