首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1147篇
  免费   80篇
  2023年   4篇
  2022年   13篇
  2021年   16篇
  2020年   13篇
  2019年   14篇
  2018年   26篇
  2017年   31篇
  2016年   39篇
  2015年   61篇
  2014年   92篇
  2013年   82篇
  2012年   110篇
  2011年   101篇
  2010年   88篇
  2009年   55篇
  2008年   80篇
  2007年   68篇
  2006年   60篇
  2005年   57篇
  2004年   52篇
  2003年   44篇
  2002年   32篇
  2001年   17篇
  2000年   12篇
  1999年   6篇
  1998年   13篇
  1997年   3篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有1227条查询结果,搜索用时 15 毫秒
21.
Hydroxycinnamoyltransferase (HCT) from sorghum (Sorghum bicolor) participates in an early step of the phenylpropanoid pathway, exchanging coenzyme A (CoA) esterified to p-coumaric acid with shikimic or quinic acid as intermediates in the biosynthesis of the monolignols coniferyl alcohol and sinapyl alcohol. In order to elucidate the mode of action of this enzyme, we have determined the crystal structures of SbHCT in its apo-form and ternary complex with shikimate and p-coumaroyl-CoA, which was converted to its product during crystal soaking. The structure revealed the roles of threonine-36, serine-38, tyrosine-40, histidine-162, arginine-371, and threonine-384 in catalysis and specificity. Based on the exact chemistry of p-coumaroyl-CoA and shikimic acid in the active site and an analysis of kinetic and thermodynamic data of the wild type and mutants, we propose a role for histidine-162 and threonine-36 in the catalytic mechanism of HCT. Considering the calorimetric data, substrate binding of SbHCT should occur sequentially, with p-coumaroyl-CoA binding prior to the acyl acceptor molecule. While some HCTs can use both shikimate and quinate as an acyl acceptor, SbHCT displays low activity toward quinate. Comparison of the structure of sorghum HCT with the HCT involved in chlorogenic acid synthesis in coffee (Coffea canephora) revealed many shared features. Taken together, these observations explain how CoA-dependent transferases with similar structural features can participate in different biochemical pathways across species.Lignin is a major structural and protective component of plant cell walls. Lignin exists as a polymer of mainly three hydroxycinnamyl alcohols and related compounds, referred to as monolignols. The most common monolignols are coniferyl, sinapyl, and p-coumaryl alcohol (Ralph et al., 2004; Vanholme et al., 2010). After polymerization, structures derived from those compounds are referred to as guaiacyl, syringyl, and p-hydroxyphenyl subunits, respectively. The specific composition of lignin subunits varies among species, tissues, and developmental stages. Gymnosperm trees produce lignin that is primarily made of guaiacyl subunits, angiosperm trees contain guaiacyl and syringyl subunits, whereas grasses contain guaiacyl and syringyl subunits with small amounts (approximately 5%) of p-hydroxyphenyl residues. This observed variation in subunit composition across species may reflect the heterogeneity in substrate specificity and kinetic parameters among various monolignol biosynthetic enzymes (Weng et al., 2008).Biosynthesis of the monolignols occurs via the phenylpropanoid pathway using Phe precursors (Vanholme et al., 2010). Phe ammonia lyase, cinnamate-4-hydroxylase, and 4-coumarate coenzyme A (CoA) ligase (4CL) generate p-coumaroyl-CoA from Phe (Vanholme et al., 2010). Grasses can bypass cinnamate-4-hydroxylase by using Tyr as a substrate for Phe ammonia lyase (Neish, 1961; Rösler et al., 1997). The hydroxycinnamoyltransferase (HCT) enzymes exchange the CoA functionality esterified to p-coumaric acid with shikimic or quinic acid to allow for the subsequent conversion of the p-coumaroyl moiety to a caffeoyl moiety by p-coumarate-3′-hydroxylase (C3′H). The hydroxycinnamoyl-CoA shikimate hydroxycinnamoyltransferases (HSTs) exhibit preference for shikimate, whereas the hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferases prefer quinate as a substrate (Sander and Petersen, 2011). Subsequent reactions ultimately lead to coniferyl and sinapyl alcohol via reduction of the γ-carbon on the propane side chain and substitution of the C3 and C5 positions of the phenol ring (Boerjan et al., 2003).Sorghum (Sorghum bicolor) is an attractive bioenergy crop with typical dry biomass yields between 20 and 25 Mg ha−1 and yields as high as 40 Mg ha−1 possible under optimal conditions (Venuto and Kindiger, 2008). Moreover, sorghum utilizes nitrogen-based fertilizer more efficiently than maize (Zea mays) and sugarcane (Saccharum officinarum), leading to less groundwater contamination and lower CO2 emission (Propheter and Staggenborg, 2010; Wortmann and Regassa, 2011). Overall, sorghum has a higher sugar yield potential per land area and requires less water for growth than maize, allowing it to grow in a more diverse range of environments (Saballos, 2008). The sorghum genome sequence has been released (Paterson et al., 2009), and Targeting Induced Local Lesions in Genomes populations exist (Xin et al., 2008) in which various cell wall mutants have been identified (Sattler et al., 2012; Vermerris and Saballos, 2012).A detailed understanding of the catalytic mechanism of phenylpropanoid-related enzymes will enable the targeted modification of lignin subunit composition. The presence of lignin poses a major obstacle to the production of biofuels and chemicals from lignocellulosic biomass, because of its ability to hinder the activity of enzymes required to degrade cellulose to sugars that can be fermented for ethanol production (Yang and Wyman, 2004; Berlin et al., 2006). Genetic modification of plant cell wall composition, especially lignin content and subunit composition, has been shown to improve biomass conversion to fermentable sugars (Chen and Dixon, 2007; Vermerris et al., 2007; Jung et al., 2012). In particular, HCT silencing in Arabidopsis (Arabidopsis thaliana) causes an accumulation of p-hydroxyphenyl residues in the lignin and decreased content of guaiacyl and syringyl residues, leading to a dwarf phenotype (Li et al., 2010). Down-regulation of HCT has also been shown to result in decreased plant growth in alfalfa (Medicago sativa; Shadle et al., 2007). Concomitantly, ruminant digestibility and the yield of fermentable sugars following enzymatic saccharification increased (Chen and Dixon, 2007; Shadle et al., 2007). Reduced HCT activity may alter cell wall polymer interactions and allow better access of cellulolytic enzymes to the cellulose. Therefore, it has the potential to reduce the energy and processing costs associated with the conversion of biomass to fuels and chemicals. However fine-tuning will be necessary to limit the negative impacts on plant growth, which will require a detailed understanding of the catalytic mechanism of HCT.Given the difference in lignin subunit composition among different species and the prominence of grasses among dedicated bioenergy crops, we have focused on elucidating the crystal structure and activity of monolignol-related enzymes of sorghum, starting with the HST-like HCT. HCT belongs to the BAHD superfamily of plant-specific acyl-CoA-dependent acyltransferases (Ma et al., 2005; D’Auria, 2006). However, the BAHD superfamily has functionally and structurally diverse members that frequently possess little (as low as 10%) sequence identity among them (St-Pierre and Luca, 2000). Recent studies led to the crystal structure of the HST-like HCT from robusta coffee (Coffea canephora), an angiosperm dicot with a binding pocket elucidated by molecular docking and mutagenesis (Lallemand et al., 2012). In this report, we present the three-dimensional structures of HCT in its apo-form and ternary complex, supplemented by mutagenic studies to elucidate its reaction mechanism and structural relationship to other members in this growing functional class.  相似文献   
22.
Radioresistance is a major cause of decreasing the efficiency of radiotherapy for non-small cell lung cancer (NSCLC). To understand the radioresistance mechanisms in NSCLC, we focused on the radiation-induced Notch-1 signaling pathway involved in critical cell fate decisions by modulating cell proliferation. In this study, we investigated the use of Notch-1-regulating flavonoid compounds as novel therapeutic drugs to regulate radiosensitivity in NSCLC cells, NCI-H1299 and NCI-H460, with different levels of radioresistance. Rhamnetin and cirsiliol were selected as candidate Notch-1-regulating radiosensitizers based on the results of assay screening for activity and pharmacological properties. Treatment with rhamnetin or cirsiliol reduced the proliferation of NSCLC cells through the suppression of radiation-induced Notch-1 expression. Indeed, rhamnetin and cirsiliol increased the expression of tumor-suppressive microRNA, miR-34a, in a p53-dependent manner, leading to inhibition of Notch-1 expression. Consequently, reduced Notch-1 expression promoted apoptosis through significant down-regulation of the nuclear factor-κB pathway, resulting in a radiosensitizing effect on NSCLC cells. Irradiation-induced epithelial-mesenchymal transition was also notably attenuated in the presence of rhamnetin and cirsiliol. Moreover, an in vivo xenograft mouse model confirmed the radiosensitizing and epithelial-mesenchymal transition inhibition effects of rhamnetin and cirsiliol we observed in vitro. In these mice, tumor volume was significantly reduced by combinational treatment with irradiation and rhamnetin or cirsiliol compared with irradiation alone. Taken together, our findings provided evidence that rhamnetin and cirsiliol can act as promising radiosensitizers that enhance the radiotherapeutic efficacy by inhibiting radiation-induced Notch-1 signaling associated with radioresistance possibly via miR-34a-mediated pathways.  相似文献   
23.
Protein secretion is a general phenomenon by which cells communicate with the extracellular environment. Secretory proteins, including hormones, enzymes, toxins, and antimicrobial peptides have various functions in extracellular environments. Here, we determined that ribosomal protein S3 (rpS3) is homodimerized and secreted in several cancer cell lines such as HT1080 (human fibrosarcoma) and MPC11 (mouse plasmacytoma). Moreover, we found that the secreted rpS3 protein increased in doxorubicin-resistant MPC11 cells compared to that in MPC11 cells. In addition, we also detected that the level of secreted rpS3 increased in more malignant cells, which were established with continuous exposure of cigarette smoke condensate. These findings suggest that the secreted rpS3 protein is an indicator of malignant tumors.  相似文献   
24.
The budding yeast Saccharomyces cerevisiae has been used extensively for the study of cell polarity, owing to both its experimental tractability and the high conservation of cell polarity and other basic biological processes among eukaryotes. The budding yeast has also served as a pioneer model organism for virtually all genome-scale approaches, including functional genomics, which aims to define gene function and biological pathways systematically through the analysis of high-throughput experimental data. Here, we outline the contributions of functional genomics and high-throughput methodologies to the study of cell polarity in the budding yeast. We integrate data from published genetic screens that use a variety of functional genomics approaches to query different aspects of polarity. Our integrated dataset is enriched for polarity processes, as well as some processes that are not intrinsically linked to cell polarity, and may provide new areas for future study.  相似文献   
25.
ABSTRACT

As standard second-line regimen has not been established for patients who are refractory to or relapse with cisplatin-based chemotherapy, an effective class of novel chemotherapeutic agents is needed for cisplatin-resistant bladder cancer. Recent publications reported that MutT homolog 1 (MTH1) inhibitors suppress tumor growth and induce impressive therapeutic responses in a variety of human cancer cells. Few studies investigated the cytotoxic effects of MTH1 inhibitors in human bladder cancer. Accordingly, we investigated the antitumor effects and the possible molecular mechanisms of MTH1 inhibitors in cisplatin-sensitive (T24) and – resistant (T24R2) human bladder cancer cell lines. These results suggest that TH588 or TH287 may induce cancer cell suppression by off-target effects such as alterations in the expression of apoptosis- and cell cycle-related proteins rather than MTH1 inhibition in cisplatin-sensitive and – resistant bladder cancer cells.

Abbreviations: MTH: MutT homolog; ROS: reactive oxygen species; CCK-8: cell counting kit-8; DCFH-DA: dichlorofluorescein diacetate; PARP: poly (ADP-ribose) polymerase  相似文献   
26.
Adhesion molecules such as ICAM-1 are important in the infiltration of leukocytes into the site of inflammation. In this study, we investigated the inhibitory effects of curcumin on ICAM-1 expression and monocyte adhesiveness as well as its underlying action mechanism in the TNF-α-stimulated keratinocytes. Curcumin induced expression of heme oxygenase-1 (HO-1) in the human keratinocyte cell line HaCaT. In addition, curcumin induced Nrf2 activation in dose- and time-dependent manners in the HaCaT cells. Curcumin suppressed TNF-α- induced ICAM-1 expression and subsequent monocyte adhesion, which were reversed by the addition of tin protoporphyrin IX (SnPP), a specific inhibitor of HO-1, or HO-1 knockdown using siRNA. Furthermore, Nrf2 knockdown using siRNA reversed the inhibitory effect of curcumin on the TNF-α-induced ICAM-1 expression and adhesion of monocytes to keratinocytes. These results suggest that curcumin may exert its anti-inflammatory activity by suppressing the TNF-α-induced ICAM-1 expression and subsequent monocyte adhesion via expression of HO-1 in the keratinocytes. [BMB Reports 2013;46(8): 410-415]  相似文献   
27.

Backgrounds

An outbreak of lung injury among South Korean adults was examined in a hospital-based case-control study, and the suspected cause was exposure to humidifier disinfectant (HD). However, a case-control study with community-dwelling controls was needed to validate the previous study’s findings, and to confirm the exposure-response relationship between HD and lung injury.

Methods

Each case of lung injury was matched with four community-dwelling controls, according to age (±3 years), sex, residence, and history of childbirth since 2006 (for women). Environmental risk factors, which included type and use of humidifier and HD, were investigated using a structured questionnaire during August 2011. The exposure to HD was calculated for both cases and controls, and the corresponding risks of lung injury were compared.

Results

Among 28 eligible cases, 16 patients agreed to participate, and 60 matched controls were considered eligible for this study. The cases were more likely to have been exposed to HD (odds ratio: 116.1, 95% confidence interval: 6.5–2,063.7). All cases were exposed to HDs containing polyhexamethyleneguanidine phosphate, and the risk of lung injury increased with the cumulative exposure, duration of exposure, and exposure per day.

Conclusions

This study revealed a statistically significant exposure-response relationship between HD and lung injury. Therefore, continuous monitoring and stricter evaluation of environmental chemicals’ safety should be conducted.  相似文献   
28.
29.
Triple-negative breast cancers (TNBCs) account for approximately 15% of breast cancer cases and exhibit an aggressive clinical behavior. In this study, we designed and synthesized two series of 2-anilinopyrimidines based on the structure of our previously reported compound 1 that act as a selective inhibitor of the basal-like TNBC cell line MDA-MB-468. Through the fine-tuning of 1, cyclic and acyclic amines at 4-position of the pyrimidine core were turned out to be crucial for the selectivity. An extensive analysis of structure-activity relationships of the analogs revealed that aminoalkyl groups at the end of the propyl chain are amenable to modification. Among the newly synthesized analogs, compound 38, bearing 4-chloropiperidinyl and cyclohexyl groups, was found to be the most potent and selective, and was about three times more potent and selective than 1 was against the TNBC cells.  相似文献   
30.
Molecular and Cellular Biochemistry - Electron transfer occurs through heme-Fe across the cytochrome c protein. The current models of long range electron transfer pathways in proteins include...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号