首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   27篇
  2022年   3篇
  2021年   14篇
  2020年   8篇
  2019年   7篇
  2018年   6篇
  2017年   10篇
  2016年   10篇
  2015年   27篇
  2014年   25篇
  2013年   24篇
  2012年   29篇
  2011年   20篇
  2010年   19篇
  2009年   11篇
  2008年   14篇
  2007年   20篇
  2006年   15篇
  2005年   7篇
  2004年   15篇
  2003年   15篇
  2002年   10篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1997年   2篇
  1996年   2篇
  1993年   1篇
  1991年   1篇
  1986年   1篇
  1968年   1篇
排序方式: 共有334条查询结果,搜索用时 15 毫秒
81.
Lee JR  Shin H  Choi J  Ko J  Kim S  Lee HW  Kim K  Rho SH  Lee JH  Song HE  Eom SH  Kim E 《The EMBO journal》2004,23(7):1506-1515
Motor proteins not actively involved in transporting cargoes should remain inactive at sites of cargo loading to save energy and remain available for loading. KIF1A/Unc104 is a monomeric kinesin known to dimerize into a processive motor at high protein concentrations. However, the molecular mechanisms underlying monomer stabilization and monomer-to-dimer transition are not well understood. Here, we report an intramolecular interaction in KIF1A between the forkhead-associated (FHA) domain and a coiled-coil domain (CC2) immediately following the FHA domain. Disrupting this interaction by point mutations in the FHA or CC2 domains leads to a dramatic accumulation of KIF1A in the periphery of living cultured neurons and an enhancement of the microtubule (MT) binding and self-multimerization of KIF1A. In addition, point mutations causing rigidity in the predicted flexible hinge disrupt the intramolecular FHA-CC2 interaction and increase MT binding and peripheral accumulation of KIF1A. These results suggest that the intramolecular FHA-CC2 interaction negatively regulates KIF1A activity by inhibiting MT binding and dimerization of KIF1A, and point to a novel role of the FHA domain in the regulation of kinesin motors.  相似文献   
82.
83.
Vascular endothelial growth factor (VEGF) has been suggested to play a critical role in the pathogenesis of rheumatoid arthritis (RA). We previously identified a novel RRKRRR hexapeptide that blocked the interaction between VEGF and its receptor through the screening of peptide libraries. In this study, we investigated whether anti-VEGF peptide RRKRRR (dRK6) could suppress collagen-induced arthritis (CIA) and regulate the activation of mononuclear cells of RA patients. A s.c. injection of dRK6 resulted in a dose-dependent decrease in the severity and incidence of CIA and suppressed synovial infiltration of inflammatory cells in DBA/1 mice. In these mice, the T cell responses to type II collagen (CII) in lymph node cells and circulating IgG Abs to CII were also dose-dependently inhibited by the peptides. In addition, VEGF directly increased the production of TNF-alpha and IL-6 from human PBMC. Synovial fluid mononuclear cells of RA patients showed a greater response to VEGF stimulation than the PBMC of healthy controls. The major cell types responding to VEGF were monocytes. Moreover, anti-VEGF dRK6 inhibited the VEGF-induced production of TNF-alpha and IL-6 from synovial fluid mononuclear cells of RA patients and decreased serum IL-6 levels in CIA mice. In summary, we observed first that dRK6 suppressed the ongoing paw inflammation in mice and blocked the VEGF-induced production of proinflammatory cytokines. These data suggest that dRK6 may be an effective strategy in the treatment of RA, and could be applied to modulate various chronic VEGF-dependent inflammatory diseases.  相似文献   
84.
Terrein was isolated from Penicillium sp. 20135, prepared by a practical synthetic way, and evaluated first time for its melanin biosynthesis inhibitory activity.  相似文献   
85.

Background  

Our aim was to determine if pramipexole, a D3 preferring agonist, effectively reduced dopamine neuron and fiber loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model when given at intraperitoneal doses corresponding to clinical doses. We also determined whether subchronic treatment with pramipexole regulates dopamine transporter function, thereby reducing intracellular transport of the active metabolite of MPTP, 1-methyl-4-phenylpyridinium (MPP+).  相似文献   
86.
A recombinant strain of Escherichia coli (JM109/pBZ1260) expressing constitutively toluene-o-xylene monooxygenase (ToMO) of Pseudomonas stutzeri OX1 degraded binary mixtures (100 microM each) of tetrachloroethylene (PCE) with either trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), cis-dichloroethylene (cis-DCE), trans-1,2-dichloroethylene (trans-DCE), or vinyl chloride (VC). PCE degradation was 8-20% for these binary mixtures, while TCE and trans-DCE with PCE were degraded at 19%, 1,1-DCE at 37%, cis-DCE at 97%, and VC at 27%. The host P. stutzeri OXI was also found to degrade binary mixtures of PCE/TCE, PCE/cis-DCE, and PCE/VC when induced with toluene. Degradation of quaternary mixtures of PCE/TCE/trans-DCE/VC and PCE/TCE/cis-DCE/VC by JM109/pBZ1260 were also investigated as well as mixtures of PCE/TCE/trans-DCE/1,1-DCE/cis-DCE/VC; when all the chlorinated compounds were present, the best degradation occurred with 24-51% removal of each. For these degradation reactions, 39-85% of the stoichiometric chloride expected from complete degradation of the chlorinated ethenes was detected. The time course of PCE/TCE/1,1-DCE degradation was also measured for a mixture of 8, 17, and 6 microM, respectively; initial degradation rates were 0.015, 0.023. and 0.029 nmol/min x mg protein, respectively. This indicates that for the first time an aerobic enzyme can degrade mixtures of all chlorinated ethenes, including the once--so it was believed-completely recalcitrant PCE.  相似文献   
87.
Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase that can activate the c-Jun N-terminal kinase and the p38 signaling pathways. It plays a critical role in cytokine- and stress-induced apoptosis. To further characterize the mechanism of the regulation of the ASK1 signal, we searched for ASK1-interacting proteins employing the yeast two-hybrid method. The yeast two-hybrid assay indicated that mouse glutathione S-transferase Mu 1-1 (mGSTM1-1), an enzyme involved in the metabolism of drugs and xenobiotics, interacted with ASK1. We subsequently confirmed that mGSTM1-1 physically associated with ASK1 both in vivo and in vitro. The in vitro binding assay indicated that the C-terminal portion of mGSTM1-1 and the N-terminal region of ASK1 were crucial for binding one another. Furthermore, mGSTM1-1 suppressed stress-stimulated ASK1 activity in cultured cells. mGSTM1-1 also blocked ASK1 oligomerization. The ASK1 inhibition by mGSTM1-1 occurred independently of the glutathione-conjugating activity of mGSTM1-1. Moreover, mGSTM1-1 repressed ASK1-dependent apoptotic cell death. Taken together, our findings suggest that mGSTM1-1 functions as an endogenous inhibitor of ASK1. This highlights a novel function for mGSTM1-1 insofar as mGSTM1-1 may modulate stress-mediated signals by repressing ASK1, and this activity occurs independently of its well-known catalytic activity in intracellular glutathione metabolism.  相似文献   
88.
Mutant mice with abnormalities are potentially useful as models for studying human defects. Here we report a group of mice with abnormal behavioral patterns. A new spontaneous mutant mouse exhibited hyperactive behavior at about seven days of age, followed by tight circling behavior. Breeding studies suggest that this mutation is caused by a single gene defect inherited in an autosomal recessive manner. Consequently, this mutation is referred to as a circling (cir) mouse mutation with the gene symbol cir. Auditory test results identified clearly the hearing loss of the cir, compared with wild-type mice. Pathologic studies confirmed developmental defects in cochlea and spiral ganglions that were correlated to the abnormal behavior observed in the cir mice. Thus, cir mice may be useful as a model for studying inner ear abnormalities and deafness in humans.  相似文献   
89.
Indigenous bacteria from poplar tree (Populus canadensis var. eugenei ‘Imperial Carolina’) and southern California shrub rhizospheres, as well as two tree-colonizing Rhizobium strains (ATCC 10320 and ATCC 35645), were engineered to express constitutively and stably toluene o-monooxygenase (TOM) from Burkholderia cepacia G4 by integrating the tom locus into the chromosome. The poplar and Rhizobium recombinant bacteria degraded trichloroethylene at a rate of 0.8 to 2.1 nmol/min/mg of protein and were competitive against the unengineered hosts in wheat and barley rhizospheres for 1 month (colonization occurred at a level of 1.0 × 105 to 23 × 105 CFU/cm of root). In addition, six of these recombinants colonized poplar roots stably and competitively with populations as large as 79% ± 12% of all rhizosphere bacteria after 28 days (0.2 × 105 to 31 × 105 CFU/cm of root). Furthermore, five of the most competitive poplar recombinants (e.g., Pb3-1 and Pb5-1, which were identified as Pseudomonas sp. strain PsK recombinants) retained the ability to express TOM for 29 days as 100% ± 0% of the recombinants detected in the poplar rhizosphere expressed TOM constitutively.  相似文献   
90.
Coronavirus disease, COVID-19 (coronavirus disease 2019), caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has a higher case fatality rate in European countries than in others, especially East Asian ones. One potential explanation for this regional difference is the diversity of the viral infection efficiency. Here, we analyzed the allele frequencies of a nonsynonymous variant rs12329760 (V197M) in the TMPRSS2 gene, a key enzyme essential for viral infection and found a significant association between the COVID-19 case fatality rate and the V197M allele frequencies, using over 200,000 present-day and ancient genomic samples. East Asian countries have higher V197M allele frequencies than other regions, including European countries which correlates to their lower case fatality rates. Structural and energy calculation analysis of the V197M amino acid change showed that it destabilizes the TMPRSS2 protein, possibly negatively affecting its ACE2 and viral spike protein processing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号