首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1116篇
  免费   73篇
  1189篇
  2023年   4篇
  2022年   13篇
  2021年   17篇
  2020年   10篇
  2019年   14篇
  2018年   25篇
  2017年   26篇
  2016年   38篇
  2015年   55篇
  2014年   86篇
  2013年   80篇
  2012年   107篇
  2011年   99篇
  2010年   86篇
  2009年   54篇
  2008年   83篇
  2007年   68篇
  2006年   60篇
  2005年   55篇
  2004年   50篇
  2003年   40篇
  2002年   31篇
  2001年   16篇
  2000年   12篇
  1999年   6篇
  1998年   13篇
  1997年   3篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有1189条查询结果,搜索用时 0 毫秒
981.
Silibinin is a polyphenolic flavonoid compound isolated from milk thistle (Silybum marianum), with known hepatoprotective, anticarcinogenic, and antioxidant effects. Herein, we show that silibinin inhibits receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis from RAW264.7 cells as well as from bone marrow-derived monocyte/macrophage cells in a dose-dependent manner. Silibinin has no effect on the expression of RANKL or the soluble RANKL decoy receptor osteoprotegerin (OPG) in osteoblasts. However, we demonstrate that silibinin can block the activation of NF-κB, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein (MAP) kinase, and extracellular signal-regulated kinase (ERK) in osteoclast precursors in response to RANKL. Furthermore, silibinin attenuates the induction of nuclear factor of activated T cells (NFAT) c1 and osteoclast-associated receptor (OSCAR) expression during RANKL-induced osteoclastogenesis. We demonstrate that silibinin can inhibit TNF-α-induced osteoclastogenesis as well as the expression of NFATc1 and OSCAR. Taken together, our results indicate that silibinin has the potential to inhibit osteoclast formation by attenuating the downstream signaling cascades associated with RANKL and TNF-α.  相似文献   
982.
983.
The onset of pronucleus formation and DNA synthesis in porcine oocytes following the injection of porcine or murine sperm was determined in order to obtain insights into species-specific paternal factors that contribute to fertilisation. Similar frequencies of oocytes with female pronuclei were observed after injection with porcine sperm or with murine sperm. In contrast, male pronuclei formed 8-9 h following the injection of porcine sperm, and 6-8 h following the injection of murine sperm. After pronucleus formation maternally derived microtubules were assembled and appeared to move both male and female pronuclei to the oocyte centre. A few porcine oocytes entered metaphase 22 h after the injection of murine sperm, but normal cell division was not observed. The mean time of onset of S-phase in male pronuclei was 9.7 h following porcine sperm injection and 7.4 h following mouse sperm injection. Ultrastructural observation revealed that male pronuclei derived from murine sperm in porcine oocytes are morphologically similar to normal male pronuclei in porcine zygotes. These results suggest that species-specific paternal factors influence the onset of pronucleus formation and DNA synthesis. However, normal nuclear cytoplasmic interactions were observed in porcine S-phase oocytes following murine sperm injection.  相似文献   
984.
Decoloration of chitosan by UV irradiation, which was used to replace a bleaching step during chitosan preparation, was evaluated under four separate treatments (effect of irradiation time, chitosan/water ratio, stirring speed, and UV light source). The optimal decoloration condition was defined as that producing white chitosan with higher viscosity. Decoloration of chitosan could be achieved effectively using a UV-C light by stirring unbleached chitosan in water (1:8, w/v) for 5 min at 120 rpm. UV irradiation applied under the optimal conditions could be used to produce chitosan with desirable white color (L* = 76.95, a* = −0.37, and b* = 14.04) and high viscosity (1301.7 mPa s at 0.5% w/v in 1.0% v/v acetic acid).  相似文献   
985.
The addition of rotenone (inhibitor of respiratory complex I), 3-nitropropionic acid (complex II inhibitor), harmine (inhibitor of complexes I and II) and cyclosporin A (CsA, an inhibitor of the mitochondrial permeability transition) reduced the nuclear damage, loss in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species and depletion of GSH in differentiated PC12 cells treated with MG132, a proteasome inhibitor. Meanwhile, rotenone, 3-nitropropionic acid and harmine did not affect the inhibitory effect of CsA or trifluoperazine (an inhibitor of the mitochondrial permeability transition and calmodulin antagonist) on the cytotoxicity of MG132. The results suggest that proteasome inhibition-induced mitochondrial dysfunction and cell injury may be attenuated by the inhibitions of respiratory chain complex I and II. The cytoprotective effect of the mitochondrial permeability transition prevention not appears to be modulated by respiratory complex inhibition.  相似文献   
986.
987.
988.
989.
Summary The cell culture on serum-coated microcarriers yielded higher efficiency of cell attachment to microcarriers and more favorable initial cell distribution on microcarriers than on the conventional microcarriers. By employing serum-coated microcarriers, the maximum cell density was increased by 46% in low serum medium and by 30% in 10% (v/v) serum-supplemented medium. Serum coating of microcarriers could provide cell attachment factors and may replace costly attachment factors supplemented in low serum medium and serum-free medium.  相似文献   
990.
Protein–protein interactions (PPIs) are involved in diverse functions in a cell. To optimize functional roles of interactions, proteins interact with a spectrum of binding affinities. Interactions are conventionally classified into permanent and transient, where the former denotes tight binding between proteins that result in strong complexes, whereas the latter compose of relatively weak interactions that can dissociate after binding to regulate functional activity at specific time point. Knowing the type of interactions has significant implications for understanding the nature and function of PPIs. In this study, we constructed amino acid substitution models that capture mutation patterns at permanent and transient type of protein interfaces, which were found to be different with statistical significance. Using the substitution models, we developed a novel computational method that predicts permanent and transient protein binding interfaces (PBIs) in protein surfaces. Without knowledge of the interacting partner, the method uses a single query protein structure and a multiple sequence alignment of the sequence family. Using a large dataset of permanent and transient proteins, we show that our method, BindML+, performs very well in protein interface classification. A very high area under the curve (AUC) value of 0.957 was observed when predicted protein binding sites were classified. Remarkably, near prefect accuracy was achieved with an AUC of 0.991 when actual binding sites were classified. The developed method will be also useful for protein design of permanent and transient PBIs. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号