首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102521篇
  免费   1037篇
  国内免费   813篇
  2023年   25篇
  2022年   102篇
  2021年   208篇
  2020年   126篇
  2019年   180篇
  2018年   12047篇
  2017年   10818篇
  2016年   7754篇
  2015年   1157篇
  2014年   930篇
  2013年   959篇
  2012年   5083篇
  2011年   13547篇
  2010年   12472篇
  2009年   8625篇
  2008年   10366篇
  2007年   11827篇
  2006年   729篇
  2005年   959篇
  2004年   1353篇
  2003年   1353篇
  2002年   1063篇
  2001年   449篇
  2000年   344篇
  1999年   157篇
  1998年   72篇
  1997年   66篇
  1996年   37篇
  1995年   46篇
  1994年   46篇
  1993年   60篇
  1992年   77篇
  1991年   88篇
  1990年   69篇
  1989年   49篇
  1988年   52篇
  1987年   46篇
  1986年   30篇
  1985年   39篇
  1984年   34篇
  1983年   45篇
  1982年   22篇
  1981年   23篇
  1979年   21篇
  1975年   20篇
  1972年   259篇
  1971年   297篇
  1970年   22篇
  1968年   19篇
  1962年   26篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
821.
Clostridium beijerinckii optinoii is a Clostridium species that produces butanol, isopropanol and small amounts of ethanol. This study compared the performances of batch and continuous immobilized cell fermentations, investigating how media flow rates and nutritional modification affected solvent yields and productivity. In 96-h batch cultures, with 80 % of the 30 g L?1 glucose consumed in synthetic media, solvent concentration was 9.45 g L?1 with 66.0 % as butanol. In a continuous fermentation using immobilized C. beijerinckii optinoii cells, also with 80 % of 30 g L?1 glucose utilization, solvent productivity increased to 1.03 g L?1 h?1. Solvent concentration reached 12.14 g L?1 with 63.0 % as butanol. Adjusting the dilution rate from 0.085 to 0.050 h?1 to allow extended residence time in column was required when glucose concentration in fresh media was increased from 30 to 50 g L?1. When acetate was used to improve the buffer capacity in media, the solvent concentration reached 12.70 on 50 g L?1 glucose. This continuous fermentation using immobilized cells showed technical feasibility for solvent production.  相似文献   
822.
The feasibility of composite hydrolysis enzymes in enhanced dewatering of waste-activated sludge (WAS) was verified in this study. A Pearson correlation analysis was conducted to explore the roles of different extracellular polymeric substance (EPS) fractions on WAS dewaterability. The results indicated that tightly bound EPS (TB-EPS) was released into the liquid phase consistently during enzymatic hydrolysis to form soluble EPS (S-EPS) and loosely bound EPS and that the TB-EPS content was positively correlated with the capillary suction time of WAS. A kinetic analysis was carried out to gain further insights into the kinetic variation in TB-EPS removal. It was found that TB-EPS reduction fit a first-order kinetic model and that mild temperature (25–30 °C) and a slightly acidic condition were favorable for the improvement of enzyme activity. Solid phase extraction combined with UV–Vis spectroscopy analysis was used to characterize the processes of migration and transformation of the hydrophobic (HPO), transphilic and hydrophilic (HPI) fractions in EPS during the enzymatic process. The results revealed that HPO and HPI were mainly composed of PN and PS, respectively, and that the enzymatic hydrolysis could enhance the transformation of HPI from TB-EPS to S-EPS, which was the dominant mechanism of improving WAS dewaterability.  相似文献   
823.
Anaerobic digestion (AD) is widely used in treating the sewage sludge, as it can reduce the amount of sludge, eliminate pathogens and produce biofuel. To enhance the operational performance and stability of anaerobic bioreactors, operational and conventional chemical data from full-scale sludge anaerobic digesters were collected over a 2-year period and summarized, and the microbial community diversity of the sludge sample was investigated at various stages of the AD process. For the purpose of distinguishing between the functional and community diversity of the microbes, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) software was used to impute the prevalence of 16S rDNA marker gene sequences in the difference in various sludge samples. Meanwhile, a taxa analysis was also carried out to investigate the different sludge samples. The microbial community diversity analysis of one AD sludge sample showed that the most dominant bacterial genera were Saccharicrinis, Syntrophus, Anaerotruncus and Thermanaerothrix. Among archaea, acetoclastic Methanosaeta represented 56.0 %, and hydrogenotrophic Methanospirillum, Methanoculleus, Methanothermus and Methanolinea accounted for 41.3 % of all methanogens. The taxa, genetic and functional prediction analyses of the feedstock and AD sludge samples suggested great community diversity differences between them. The taxa of bacteria in two AD sludge samples were considerably different, but the abundances of the functional KEGG pathways took on similar levels. The numbers of identified pathogens were significantly lower in the digested sludge than in the feedstock, but the PICRUSt results showed the difference in “human diseases” abundances in the level-1 pathway between the two sludge samples was small.  相似文献   
824.
Self‐assembled vertical heterostructure with a high interface‐to‐volume ratio offers tremendous opportunities to realize intriguing properties and advanced modulation of functionalities. Here, a heterostructure composed of two visible‐light photocatalysts, BiFeO3 (BFO) and ε‐Fe2O3 (ε‐FO), is designed to investigate its photoelectrochemical performance. The structural characterization of the BFO‐FO heterostructures confirms the phase separation with BFO nanopillars embedded in the ε‐FO matrix. The investigation of band structure of the heterojunction suggests the assistance of photoexcited carrier separation, leading to an enhanced photoelectrochemical performance. The insights into the charge separation are further revealed by means of ultrafast dynamics and electrochemical impedance spectroscopies. This work shows a delicate design of the self‐assembled vertical heteroepitaxy by taking advantage of the intimate contact between two phases that can lead to a tunable charge interaction, providing a new configuration for the optimization of photoelectrochemical cell.  相似文献   
825.
Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air–water and air–CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas–liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas–liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U G) range of 0.0004–0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K La) by a factor of 1.2–1.9 compared to the flat sheet membrane.  相似文献   
826.
Despite the significant breakthroughs in research on microalgae as a feedstock for biodiesel, its production cost is still much higher than that of fossil diesel. One possible solution to overcome this problem is to optimize algal growth and lipid production in wastewater. The present study examines the optimization of pretreatment of municipal wastewater and aeration conditions in order to enhance the lipid productivity of Scenedesmus obliquus. Results showed that no significant differences were recorded in lipid productivity of S. obliquus grown in primary settled or sterilized municipal wastewater; however, ultrasound pretreatment of wastewater significantly decreased the lipid production. Whereas, aeration rates of 0.2 vvm significantly increased lipid content by 51 %, with respect to the non-aerated culture, which resulted in maximum lipid productivity (32.5 mg L?1 day?1). Furthermore, aeration enrichment by 2 % CO2 resulted in increase of lipid productivity by 46 % over the CO2 non-enriched aerated culture. Fatty acid profile showed that optimized aeration significantly enhanced monounsaturated fatty acid production, composed mainly of C18:1, by 1.8 times over the non-aerated S. obliquus culture with insignificant changes in polyunsaturated fatty acid proportion; suggesting better biodiesel characteristics for the optimized culture.  相似文献   
827.
Selective releasing intracellular product in Triton X-100 micelle aqueous solution to prepare whole cell biocatalyst is a novel strategy for biosynthesis of Monascus pigments, in which cell suspension culture exhibits some advantages comparing with the corresponding growing cell submerged culture. In the present work, the nonionic surfactant Triton X-100 was successfully replaced by edible plant oils for releasing intracellular Monascus pigments. High concentration of Monascus pigments (with absorbance nearly 710 AU at 470 nm in the oil phase, normalized to the aqueous phase volume approximately 142 AU) was achieved by cell suspension culture in peanut oil–water two-phase system. Furthermore, the utilization of edible oil as extractant also fulfills the demand for application of Monascus pigments as natural food colorant.  相似文献   
828.
In this study, after the expression of a pyruvate carboxylase gene (PYC) cloned from Meyerozyma guilliermondii in a marine-derived yeast Yarrowia lipolytica SWJ-1b, a transformant PG86 obtained had much higher PYC activity than Y. lipolytica SWJ-1b. At the same time, the PYC gene expression and citric acid (CA) production by the transformant PG86 were also greatly enhanced. When glucose concentration in the medium was 60.0 g L?1, CA concentration formed by the transformant PG86 was 34.02 g L?1, leading to a CA yield of 0.57 g g?1 of glucose. During a 10-L fed-batch fermentation, the final concentration of CA was 101.0 ± 1.3 g L?1, the yield was 0.89 g g?1 of glucose, the productivity was 0.42 g L?1 h?1 and only 5.93 g L?1 reducing sugar was left in the fermented medium within 240 h of the fed-batch fermentation. HPLC analysis showed that most of the fermentation products were CA.  相似文献   
829.
Fluorescence spectroscopy in combination with multivariate statistical methods was employed as a tool for monitoring the manufacturing process of pertactin (PRN), one of the virulence factors of Bordetella pertussis utilized in whopping cough vaccines. Fluorophores such as amino acids and co-enzymes were detected throughout the process. The fluorescence data collected at different stages of the fermentation and purification process were treated employing principal component analysis (PCA). Through PCA, it was feasible to identify sources of variability in PRN production. Then, partial least square (PLS) was employed to correlate the fluorescence spectra obtained from pure PRN samples and the final protein content measured by a Kjeldahl test from these samples. In view that a statistically significant correlation was found between fluorescence and PRN levels, this approach could be further used as a method to predict the final protein content.  相似文献   
830.
Continuous, anaerobic fermentations of D-xylose were performed by Actinobacillus succinogenes 130Z in a custom, biofilm reactor at dilution rates of 0.05, 0.10 and 0.30 h?1. Succinic acid yields on xylose (0.55–0.68 g g?1), titres (10.9–29.4 g L?1) and productivities (1.5–3.4 g L?1 h?1) were lower than those of a previous study on glucose, but product ratios (succinic acid/acetic acid = 3.0–5.0 g g?1) and carbohydrate consumption rates were similar. Also, mass balance closures on xylose were up to 18.2 % lower than those on glucose. A modified HPLC method revealed pyruvic acid excretion at appreciable concentrations (1.2–1.9 g L?1) which improved the mass balance closure by up to 16.8 %. Furthermore, redox balances based on the accounted xylose consumed and the excreted metabolites, indicated an overproduction of reducing power. The oxidative pentose phosphate pathway was shown to be a plausible source of the additional reducing power.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号