首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   9篇
  109篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   5篇
  2018年   7篇
  2017年   1篇
  2016年   2篇
  2015年   9篇
  2014年   7篇
  2013年   4篇
  2012年   2篇
  2011年   6篇
  2010年   6篇
  2009年   2篇
  2008年   7篇
  2007年   7篇
  2006年   2篇
  2005年   5篇
  2004年   5篇
  2003年   4篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
61.
NADH oxidases (NOXs) catalyze the two-electron reduction of oxygen to H2O2 or four-electron reduction of oxygen to H2O. In this report, we show that an NADH oxidase from Thermococcus profundus (NOXtp) displays two forms: a native dimeric protein under physiological conditions and an oxidized hexameric form under oxidative stress. Native NOXtp displays high NADH oxidase activity, and oxidized NOXtp can accelerate the aggregation of partially unfolded proteins. The aggregates formed by NOXtp have characteristics similar to β-amyloid and Lewy bodies in neurodegenerative diseases, including an increase of β-sheet content. Oxidized NOXtp can also bind nucleic acids and cause their degradation by oxidizing NADH to produce H2O2. Furthermore, Escherichia coli cells expressing NOXtp are less viable than cells not expressing NOXtp after treatment with H2O2. As NOXtp shares similar features with eukaryotic cell death isozymes and life may have originated from hyperthermophiles, we suggest that NOXtp may be an ancestor of cell death proteins.  相似文献   
62.
63.
I J Byeon  R F Kelley  M Llinás 《Biochemistry》1989,28(24):9350-9360
The kringle 2 domain of human tissue-type plasminogen activator (t-PA) has been characterized via 1H NMR spectroscopy at 300 and 620 MHz. The experiments were performed on the isolated domain obtained by expression of the 174-263 portion of t-PA in Escherichia coli [Cleary et al. (1989) Biochemistry 28, 1884-1891]. The spectrum of t-PA kringle 2 is characteristic of a globular structure and shows overall similarity to that of the plasminogen (PGN) kringle 4. Spectral comparison with human and bovine PGN kringle 4 identifies side-chain resonances from Leu46, which afford a fingerprint of kringle folding, and from most of the aromatic ring spin systems. Assignment of signals arising from the His13, His48a, and His64 side chains, which are unique to t-PA kringle 2, was assisted by the availability of a His64----Tyr mutant. Ligand-binding studies confirm that t-PA kringle 2 binds L-lysine with an association constant Ka approximately 11.9 mM-1. The data indicate that homologous or conserved residues relative to those that compose the lysine-binding sites of PGN kringles 1 and 4 are involved in the binding of L-lysine to t-PA kringle 2. These include Tyr36 and, within the kringle inner loop, Trp62, His64, Trp72, and Tyr74. Acid/base titration of aromatic singlets in the presence of L-lysine yields pKa* approximately 6.25 and approximately 4.41 for His13 and His64, respectively, and shows that the His48a imidazole group does not protonate down to pH* approximately 4.3. Thus, the His48a and His64 side chains are in solvent-shielded locations. As observed for the PGN kringles, the Trp62 indole group titrates with pKa* approximately 4.60, which indicates proximity of the side chain to a titratable carboxyl group, most likely that of Asp57 at the binding site. Several labile NH protons of t-PA kringle 2 exhibit retarded H-exchange kinetics, requiring more than a week in 2H2O for full deuteration in the presence of L-lysine at 37 degrees C. This reveals that kringle 2 is endowed with a compact, dynamically stable conformation. Proton Overhauser experiments in 1H2O, centered on well-resolved NH resonances between 9.8 and 12 ppm, identify signals arising from the His48a imidazole NH3 proton and the three Trp indole NH1 protons. A strong dipolar interaction was observed among the Trp25 indole NH1, the Tyr50 amide NH, and the His48a imidazole CH2 protons, which affords evidence for an aromatic cluster in t-PA kringle 2 similar to that found at the hydrophobic kernel of PGN kringles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
64.
Immunoglobulin binding domain B1 of streptococcal protein G (GB1), a small (56 residues), stable, single domain protein, is one of the most extensively used model systems in the area of protein folding and design. The recently determined NMR structure of a quadruple mutant (HS#124F26A, L5V/F30V/Y33F/A34F) revealed a domain-swapped dimer that dissociated into a partially folded, monomeric species at low micromolar protein concentrations. Here, we have characterized this monomeric, partially folded species by NMR and show that extensive conformational heterogeneity for a substantial portion of the polypeptide chain exists. Exchange between the conformers within the monomer ensemble on the microsecond to millisecond timescale renders the majority of backbone amide resonances broadened beyond detection. Despite these extensive temporal and spatial fluctuations, the overall architecture of the monomeric mutant protein resembles that of wild-type GB1 and not the monomer unit of the domain-swapped dimer.  相似文献   
65.
We present an efficient method for the production of N-acetyl-l-phosphinothricin (N-AcPt) from commercial dl-phosphinothricin (DL-PPT) by organic acetylation for use as a negative selection agent (NSA) that induces cell death in argE transgenic rice. DL-PPT was efficiently converted into N-AcPt with tetrahydrofuran (THF) and acetic anhydride (Ac2O). Chemical changes were confirmed using NMR and ATR-FTIR analyses. DL-PPT was toxic but N-AcPt did not show cytotoxic effects on leaf discs or seed germination of wild-type rice. Conversely, in argE–hpt transgenic rice, non-toxic N-AcPt showed the negative selection (NS) effect by inducing cell destruction in leaf discs and restricting seed germination. For inducing NS, ?0.1 mg ml−1 and ?0.5 mg ml−1 of N-AcPt were effective in leaf and seed assays, respectively. Further, the NS effect occurred faster in the leaf assay compared with the seed germination assay, again indicating the leaf assay was a more sensitive indicator of N-AcPt as an NSA to argE transgenic rice than the seed germination assay. This negative selection approach could be useful for the development of selectable marker free transgenic plants in the economically important monocot species and its commercialization for multiple gene transformation.  相似文献   
66.
Short-chain alkanes (SCA; C2-C4) emitted from geological sources contribute to photochemical pollution and ozone production in the atmosphere. Microorganisms that oxidize SCA and thereby mitigate their release from geothermal environments have rarely been studied. In this study, propane-oxidizing cultures could not be grown from acidic geothermal samples by enrichment on propane alone, but instead required methane addition, indicating that propane was co-oxidized by methanotrophs. “Methylacidiphilum” isolates from these enrichments did not grow on propane as a sole energy source but unexpectedly did grow on C3 compounds such as 2-propanol, acetone, and acetol. A gene cluster encoding the pathway of 2-propanol oxidation to pyruvate via acetol was upregulated during growth on 2-propanol. Surprisingly, this cluster included one of three genomic operons (pmoCAB3) encoding particulate methane monooxygenase (PMO), and several physiological tests indicated that the encoded PMO3 enzyme mediates the oxidation of acetone to acetol. Acetone-grown resting cells oxidized acetone and butanone but not methane or propane, implicating a strict substrate specificity of PMO3 to ketones instead of alkanes. Another PMO-encoding operon, pmoCAB2, was induced only in methane-grown cells, and the encoded PMO2 could be responsible for co-metabolic oxidation of propane to 2-propanol. In nature, propane probably serves primarily as a supplemental growth substrate for these bacteria when growing on methane.Subject terms: Environmental microbiology, Biogeochemistry, Microbial ecology  相似文献   
67.
Site-directed mutagenesis was used to probe the structural and functional roles of two highly conserved residues, Tyr-52 and Tyr-73, in interfacial catalysis by bovine pancreatic phospholipase A2 (PLA2, overproduced in Escherichia coli). According to crystal structures, the side chains of these two active site residues form H-bonds with the carboxylate of the catalytic residue Asp-99. Replacement of either or both Tyr residues by Phe resulted in only very small changes in catalytic rates, which suggests that the hydrogen bonds are not essential for catalysis by PLA2. Substitution of either Tyr residue by nonaromatic amino acids resulted in substantial decreases in the apparent kcat toward 1,2-dioctanoyl-sn-glycero-3-phosphocholine (DC8PC) micelles and the v(o) (turnover number at maximal substrate concentration, i.e., mole fraction = 1) toward 1,2-dimyristoyl-sn-glycero-3-phosphomethanol (DC14PM) vesicles in scooting mode kinetics [Berg, O. G., Yu, B.-Z., Rogers, J., & Jain, M. K. (1991) Biochemistry 30, 7283-7297]. The Y52V mutant was further analyzed in detail by scooting mode kinetics: the E to E* equilibrium was examined by fluorescence; the dissociation constants of E*S, E*P, and E*I (KS*, KP*, and KI*, respectively) in the presence of Ca2+ were measured by protection of histidine-48 modification and by difference UV spectroscopy; the Michaelis constant KM* was calculated from initial rates of hydrolysis in the absence and presence of competitive inhibitors; and the turnover number under saturating conditions (kcat, which is a theoretical value since the enzyme may not be saturated at the interface) was calculated from the vo and KM* values. The results indicated little perturbation in the interfacial binding step (E to E*) but ca. 10-fold increases in KS*, KP*, KI*, and KM* and a less than 10-fold decrease in kcat. Such changes in the function of Y52V are not due to global conformational changes since the proton NMR properties of Y52V closely resemble those of wild-type PLA2; instead, it is likely to be caused by perturbed enzyme-substrate interactions at the active site. Tyr-73 appears to play an important structural role. The conformational stability of all Tyr-73 mutants decreased by 4-5 kcal/mol relative to that of the wild-type PLA2. The proton NMR properties of Y73A suggested significant conformational changes and substantially increased conformational flexibility. These detailed structural and functional analyses represent a major advancement in the structure-function study of an enzyme involved in interfacial catalysis.  相似文献   
68.
Jee J  Byeon IJ  Louis JM  Gronenborn AM 《Proteins》2008,71(3):1420-1431
The immunoglobulin-binding domain B1 of streptococcal protein G (GB1), a very stable, small, single-domain protein, is one of the most extensively used models in the area of protein folding and design. Variants derived from a library of randomized hydrophobic core residues previously revealed alternative folds, namely a completely intertwined tetramer (Frank et al., Nat Struct Biol 2002;9:877-885) and a domain-swapped dimer (Byeon et al., J Mol Biol 2003;333:141-152). Here, we report the NMR structure of the single amino acid mutant Ala-34-Phe which exists as side-by-side dimer. The dimer dissociation constant is 27 +/- 4 microM. The dimer interface comprises two structural elements: First, the beta-sheets of the two monomers pair in an antiparallel arrangement, thereby forming an eight-stranded beta-sheet. Second, the alpha-helix is shortened, ending in a loop that engages in intermolecular contacts. The largest difference between the monomer unit in the A34F dimer and the monomeric wild-type GB1 is the dissolution of the C-terminal half of the alpha-helix associated with a pronounced slow conformational motion of the interface loop. This involves a large movement of the Tyr-33 side chain that swings out from the monomer to engage in dimer contacts.  相似文献   
69.
M R Rejante  I J Byeon  M Llinás 《Biochemistry》1991,30(46):11081-11092
The ligand specificity of the human plasminogen kringle 4 was characterized in terms of ligand size, aromatic/aliphatic character, and ionic charge distribution. The binding of the following ligands was investigated via 1H NMR spectroscopy, and their equilibrium association constants (Ka) were determined: (1) p-aminomethylbenzoic acid (Ka approximately 4.8 mM-1), (2) benzylamine (Ka approximately 0.2 mM-1), (3) l-aminohexane (Ka approximately 0.07 mM-1), (4) 7-aminoheptanoic acid (Ka approximately 6.6 mM-1), (5) 5-aminopentanoic acid (Ka approximately 16 mM-1), (6) N alpha-acetyl-L-arginine (Ka approximately 0.3 mM-1), and (7) N alpha-acetyl-L-arginine methyl ester (Ka approximately 0.08 mM-1). Benzamidine and L-arginine do not bind measurably to kringle 4. We have also established that 1-hexanoic acid and 4-methylbenzoic acid do not interact significantly with kringle 4 (Ka less than 0.05 mM-1). The Trp62 resonances were found to be quite sensitive to aromatic ligands as well as to aliphatic ligand length. Phe64 is similarly sensitive to the ligand aromatic/aliphatic character and chain length and to the identity of the ligand anionic group. His31 and His33 do not respond significantly to variations in ligand structure, although they are perturbed by aromatic and aliphatic effectors. The perturbations induced by the arginine derivatives on these residues show that these compounds interact with the lysine-binding site (LBS) of kringle 4. The LBS was further characterized using 2D NMR studies of a kringle 4/trans-(aminomethyl)cyclohexanecarboxylic acid (AMCHA) complex. A complete assignment of the AMCHA spectrum in the bound state was achieved. This enabled the unambiguous identification of intermolecular contact points between the central AMCHA protons and Trp62 and Trp72. A model based on the X-ray crystallographic structure of kringle 4, incorporating these constraints, has been derived.  相似文献   
70.
Yuan C  Byeon IJ  Poi MJ  Tsai MD 《Biochemistry》1999,38(10):2919-2929
Previous NMR studies have shown that many phospholipase A2 (PLA2, from bovine pancreas, overexpressed in Escherichia coli) mutants display some properties reminiscent of a molten globule state. Further NMR analyses for some of the mutants indicated that formation of the "molten globule-like state" is a pH-dependent phenomenon. The mutants I9Y and I9F showed perturbed NMR properties throughout the pH range studied, while the mutants H48A and C44A/C105A displayed native-like spectra at neutral pH but molten globule-like ones under acidic conditions, with a "transition pH" around 4. On the other hand, wild-type PLA2 exhibits exceptional pH stability and turns into a similar molten globule-like state only under highly acidic conditions such as 1 M HCl. The H48A mutant was used to rigorously establish the property of the molten globule-like state of PLA2 mutants. The results of far-UV CD, near-UV CD, and ANS-binding fluorescence suggest that H48A retains native-like secondary structures but loses tertiary structure during the conformational transition. However, the tertiary structure is not completely lost, as evidenced by the retention of some long-range NOEs in two-dimensional NOESY spectra. The conclusion was further substantiated by three-dimensional NOESY-HSQC experiments on a 15N-labeled H48A sample. It was revealed that the molten globule-like state at mildly acidic pH retained some rigid tertiary structure, which consisted of partial alpha-helix II (Y52-L58), alpha-helix III (D59-V63), beta-wing (S74-S85) and partial alpha-helix IV (A90-N97). These residual tertiary structures grouped in half of the protein could be attributed to stabilization by some of the disulfide bonds. The extreme sensitivity of the PLA2 structure to site-directed mutagenesis is unprecedented. It is interesting to note that most of the functional residues (the active site, the hydrophobic channel, the interfacial binding site, and the calcium-binding loop) are located in the remainder of the protein, which is well disrupted in tertiary interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号