首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   618篇
  免费   51篇
  2023年   1篇
  2022年   5篇
  2021年   18篇
  2020年   12篇
  2019年   16篇
  2018年   17篇
  2017年   14篇
  2016年   34篇
  2015年   45篇
  2014年   46篇
  2013年   36篇
  2012年   56篇
  2011年   48篇
  2010年   30篇
  2009年   24篇
  2008年   35篇
  2007年   32篇
  2006年   29篇
  2005年   36篇
  2004年   38篇
  2003年   30篇
  2002年   23篇
  2001年   3篇
  2000年   9篇
  1999年   5篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
  1970年   2篇
  1969年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有669条查询结果,搜索用时 156 毫秒
111.
112.
113.

Background

Interleukin (IL)‐13, overproduced in the skin of atopic dermatitis (AD), has been shown to play an essential role in the pathogenesis of the disease. Thus, inhibition of IL‐13 production should provide a key step to alleviate disease conditions of the atopic skin. In the present study, IL‐13 antisense oligonucleotide (ASO) was designed and formulated with cationic elastic liposome (cEL) to improve transdermal delivery.

Methods

ASOs were generated against murine IL‐13 mRNA (+4 to + 23) and complexed with cEL. Physicochemical properties of IL‐13 ASO/cEL complex were examined by DNA retardation and DNase I protection assay. An in vitro inhibition study was performed in T‐helper 2 (Th2) cells and cytotoxicity was tested by the XTT assay. The in vivo effect of IL‐13 ASO/cEL complex was tested in a murine model of AD.

Results

In vitro, the IL‐13 ASO/cEL complex showed dose‐ and ratio‐dependent inhibition of IL‐13 secretion in Th2 cells. At the IL‐13 ASO/cEL ratio of 6, maximum inhibition of IL‐13 secretion was observed. When applied to the ovalbumin‐sensitized murine model of AD, topically administered IL‐13 ASO/cEL complex dramatically suppressed IL‐13 production (by up to 70% of the control) in the affected skin region. In addition, the levels of IL‐4 and IL‐5 were also significantly reduced. Moreover, IL‐13 ASO/cEL‐treated AD mice showed reduced infiltration of inflammatory cells into the epidermal and dermal areas, with concomitant reduction of skin thickness.

Conclusions

These data suggests that IL‐13 ASO/cEL complex can provide a potential therapeutic tool for the treatment of AD and also be applied to other immune diseases associated with the production of Il‐13. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
114.
The ability to generate neural lineages from human embryonic stem cells (hESCs) in a controlled manner would further investigation of human neurogenesis and development of potential cell therapeutic applications to treat neurological diseases; however, generating such neural stem cells (NSCs) remains a challenge. In an attempt to characterize the cellular mechanisms involved in hESC differentiation into neuroprogenitor cells, we performed 2‐DE using protein extracts from hESC‐derived embryoid bodies (EBs) and neuroectodermal spheres (NESs) bearing neuroprogenitors. Of 47 differentially expressed protein spots, 28 nonredundant spots were shown to be upregulated in the NESs; these protein spots included neurogenesis‐related proteins (TAF1, SEPT2, NPH3, and CRABP), as expected. Interestingly, 6 of these 28 protein spots were cytoskeleton‐associated proteins (CSAP) such as Fascin‐1, Cofilin‐1, and Stathmin‐1. Western‐blot analyses confirmed the increased levels of these proteins in the NESs. Furthermore, immunostaining analysis showed that both Fascin‐1 and Stathmin‐1 were preferentially expressed in the inner rims of neural rosettes, which are characteristic features of neuroprogenitors in culture. We also confirmed prominent expression of Fascin‐1 in (sub‐)ventricular zone in E15.5 mouse fetal brain. Our results suggest that, in addition to the induction of those genes involved in neural development, hESC differentiation into the NES is associated with a marked reorganization of the cellular cytoskeleton.  相似文献   
115.
116.
Yoon CH  Hyun KH  Kim RK  Lee H  Lim EJ  Chung HY  An S  Park MJ  Suh Y  Kim MJ  Lee SJ 《FEBS letters》2011,585(14):2331-2338
A subpopulation of cancer cells with stem cell properties is responsible for tumor formation, maintenance, and malignant progression; however, the molecular mechanisms underlying the maintenance of cancer stem-like cell properties have remained unclear. Here, we show that the Rho family GTPase Rac1 is involved in the glioma stem-like cell (GSLC) maintenance and tumorigenicity in human glioma. The Rac1-Pak signaling was markedly activated in GSLCs. Knockdown of Rac1 caused reduction of expression of GSLC markers, self-renewal-related proteins and neurosphere formation. Moreover, down-regulation of Rac1 suppressed the migration, invasion, and malignant transformation in GSLCs. Furthermore, inhibition of Rac1 enhanced radiation sensitivity of GSLCs. These results indicate that the small GTPase Rac1 is involved in the maintenance of stemness and malignancies in GSLCs.  相似文献   
117.
118.
119.
Lee SC  Hwang IS  Hwang BK 《Planta》2011,234(6):1111-1125
Proteomics facilitates our understanding of cellular processes and network functions in the plant defense response during abiotic and biotic stresses. Here, we demonstrate that the ectopic expression of the Capsicum annuum antimicrobial protein CaAMP1 gene in Arabidopsis thaliana confers enhanced tolerance to methyl viologen (MV)-induced oxidative stress, which is accompanied by lower levels of lipid peroxidation. Quantitative comparative proteome analyses using two-dimensional gel electrophoresis coupled with mass spectrometry identified some of the oxidative stress- and disease-related proteins that are differentially regulated by CaAMP1 overexpression in Arabidopsis leaves. Antioxidant- and defense-related proteins, such as 2-cys peroxiredoxin, l-ascorbate peroxidase, peroxiredoxin, glutathione S-transferase and copper homeostasis factor, were up-regulated in the CaAMP1 transgenic leaf tissues. In contrast, GSH-dependent dehydroascorbate reductase and WD-40 repeat family protein were down-regulated by CaAMP1 overexpression. In addition, CaAMP1 overexpression enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 infection and also H2O2 accumulation in Arabidopsis. The identified antioxidant- and defense-related genes were differentially expressed during MV-induced oxidative stress and Pst DC3000 infection. Taken together, we conclude that CaAMP1 overexpression can regulate the differential expression of defense-related proteins in response to environmental stresses to maintain reactive oxygen species (ROS) homeostasis.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号