首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57648篇
  免费   6959篇
  国内免费   13篇
  64620篇
  2024年   83篇
  2023年   83篇
  2022年   353篇
  2021年   860篇
  2020年   2668篇
  2019年   4298篇
  2018年   4261篇
  2017年   4433篇
  2016年   4830篇
  2015年   5049篇
  2014年   4860篇
  2013年   5403篇
  2012年   3609篇
  2011年   3199篇
  2010年   4106篇
  2009年   2694篇
  2008年   2076篇
  2007年   1508篇
  2006年   1328篇
  2005年   1306篇
  2004年   1263篇
  2003年   1050篇
  2002年   1047篇
  2001年   881篇
  2000年   818篇
  1999年   552篇
  1998年   179篇
  1997年   138篇
  1996年   126篇
  1995年   96篇
  1994年   91篇
  1993年   76篇
  1992年   166篇
  1991年   130篇
  1990年   89篇
  1989年   108篇
  1988年   74篇
  1987年   65篇
  1986年   70篇
  1985年   53篇
  1984年   54篇
  1983年   37篇
  1982年   27篇
  1981年   24篇
  1978年   30篇
  1976年   34篇
  1975年   31篇
  1973年   35篇
  1970年   24篇
  1969年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Pseudomonas denitrificans is a gram-negative bacterium that can produce vitamin B12 under aerobic conditions. Recently, recombinant strains of P. denitrificans overexpressing a vitamin B12-dependent glycerol dehydratase (DhaB) were developed to produce 3-hydroxypropionic acid (3-HP) from glycerol. The recombinant P. denitrificans could produce 3-HP successfully under aerobic conditions without an exogenous supply of vitamin B12, but the 3-HP produced disappeared during extended cultivation due to the 3-HP degradation activity in this strain. This study developed mutant strains of P. denitrificans that do not degrade 3-HP. The following eight candidate enzymes, which might be responsible for 3-HP degradation, were selected, cloned, and studied for their activity in Escherichia coli: four (putative) 3-hydroxyisobutyrate dehydrogenases (3HIBDH), a putative 3-HP dehydrogenase (3HPDH), an alcohol dehydrogenase (ADH), and two choline dehydrogenases (CHDH). Among them, 3HIBDHI, 3HIBDHIV, and 3HPDH exhibited 3-HP degrading activity when expressed heterologously in E. coli. When 3hpdh alone or along with 3hibdhIV were disrupted from P. denitrificans, the mutant P. denitrificans exhibited greatly reduced 3-HP degradation activity that could not grow on 3-HP as the sole carbon and energy source. When the double mutant P. denitrificans Δ3hpdhΔ3hibdhIV was transformed with DhaB, an improved 3-HP yield (0.78 mol/mol) compared to that of the wild-type counterpart (0.45 mol/mol) was obtained from a 24-h flask culture. This study indicates that 3hpdh and 3hibdhIV (to a lesser extent) are mainly responsible for 3-HP degradation in P. denitrificans and their deletion can prevent 3-HP degradation during its production by recombinant P. denitrificans.  相似文献   
972.
Porphyra spp. (currently Porphyra and Pyropia) are major sources of seafood globally. In this study, we investigated the effects of ammonium concentration, water temperature, and thallus stocking density on N-ammonium uptake rate (NUR), tissue nutrients content, N–NH4 + filtration efficiency (NUE: nitrogen uptake efficiency %) of Pyropia yezoensis at a laboratory scale and in a mesoscale to evaluate the potential of this species as a biofilter. Additionally, photosynthetic activity was examined using Diving-PAM fluorometer to evaluate the health status. At a laboratory scale, the NUR and tissue nitrogen (N) content of P. yezoensis increased with increasing NH4 + concentrations in the medium. The NUR at thallus stocking densities of 5 and 10 g fresh weight (FW) L–1 were significantly higher than that at 20 g FW L–1. Effective quantum yield (? F/F m ) and tissue N content was significantly higher at all stocking densities than that at the beginning of experiment. The NUE was over 90 % at 10 and 17 °C, while all thalli cultured at 25 °C died after 5 days. In a mesoscale, the NUE at a thallus stocking density of 10.0 g FW L–1 was significantly higher than that at a stocking density of 5.0 g FW L–1. No differences in the NUE occurred between 10 °C and 17 °C. Photosynthetic activity (?F/Fm and rETRmax) of P. yezoensis at optimal culture condition (10–12 °C and 10 g FW L–1) increased over time through the experiment. This indicates that thallus was healthy during culture and chlorophyll a fluorescence can be as a monitoring tool for evaluating the physiological status of seaweeds in an integrated multi-trophic aquaculture.  相似文献   
973.
974.
975.
A Gram-staining negative bacterium, THG-DT81T, which was isolated from soil of a ginseng field, was investigated using a polyphasic taxonomic approach. Cells were oxidase- and catalase-positive, aerobic, rod-shaped and motile with one polar flagellum. Strain THG-DT81T grew optimally at pH 7.0 and in the absence of NaCl on trypticase soy agar. Its optimum growth temperature was 25–28 °C. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain THG-DT81T belongs to the family Sphingomonadaceae and was related to Sphingomonas pituitosa EDIVT (98.0 % similarity), S. leidyi ATCC 15260T (97.8 %), S. trueperi LMG 2142T (97.1 %), S. azotifigens NBRC 15497T (97.1 %), S. koreensis JSS26 T (97.1 %) and S. dokdonensis DS-4T (97.0 %). Strain THG-DT81T contained Q-10 as the predominant ubiquinone and C18:1 ω7c and C16:0 as the major fatty acids. The G+C content of the genomic DNA was determined to be 66.8 mol %. The major component in the polyamine pattern was identified as sym-homospermidine. The major polar lipids detected in strain THG-DT81T were sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylcholine. The DNA–DNA relatedness values of the strain THG-DT81T and its closest phylogenetically neighbors were below 21 %. The phenotypic characteristics and genotypic data demonstrated the affiliation of strain THG-DT81T to the genus Sphingomonas. On the basis of the polyphasic taxonomic data presented, strain THG-DT81T is described as a novel species of genus Sphingomonas, for which the name Sphingomonas kyeonggiense sp. nov. is proposed. The type strain is THG-DT81T (= KACC 17173T = JCM 18825T).  相似文献   
976.
977.
Due to the highly immunogenic nature of renal cell carcinoma (RCC), the tumor microenvironment (TME) is enriched with various innate and adaptive immune subsets. In particular, gamma-delta (γδ) T cells can act as potent attractive mediators of adoptive cell transfer immunotherapy because of their unique properties such as non-reliance on major histocompatibility complex expression, their ability to infiltrate human tumors and recognize tumor antigens, relative insensitivity to immune checkpoint molecules, and broad tumor cytotoxicity. Therefore, it is now critical to better characterize human γδ T-cell subsets and their mechanisms in RCCs, especially the stage of differentiation. In this study, we aimed to identify γδ T cells that might have adaptive responses against RCC progression. We characterized γδ T cells in peripheral blood and tumor-infiltrating lymphocytes (TILs) in freshly resected tumor specimens from 20 RCC patients. Furthermore, we performed a gene set enrichment analysis on RNA-sequencing data from The Cancer Genome Atlas (TCGA) derived from normal kidneys and RCC tumors to ascertain the association between γδ T-cell infiltration and anti-cancer immune activity. Notably, RCC-infiltrating CD3low Vγ9Vδ1 T cells with a terminally differentiated effector memory phenotype with up-regulated activation/exhaustion molecules were newly detected as predominant TILs, and the cytotoxic activity of these cells against RCC was confirmed in vitro. In an additional analysis of the TCGA RCC dataset, γδ T-cell enrichment scores correlated strongly with those for CTLs, Th1 cells, “exhausted” T cells, and M1 macrophages, suggesting active involvement of γδ T cells in anti-tumor rather than pro-tumor activity, and Vδ1 cells were more abundant than Vδ2 or Vδ3 cells in RCC tumor samples. Thus, we posit that Vγ9Vδ1 T cells may represent an excellent candidate for adoptive immunotherapy in RCC patients with a high risk of relapse after surgery.  相似文献   
978.
Two key plant adaptations for phosphorus (P) acquisition are carboxylate exudation into the rhizosphere and mycorrhizal symbioses. These target different soil P resources, presumably with different plant carbon costs. We examined the effect of inoculation with arbuscular mycorrhizal fungi (AMF) on amount of rhizosphere carboxylates and plant P uptake for 10 species of low‐P adapted Kennedia grown for 23 weeks in low‐P sand. Inoculation decreased carboxylates in some species (up to 50%), decreased plant dry weight (21%) and increased plant P content (23%). There was a positive logarithmic relationship between plant P content and the amount of rhizosphere citric acid for inoculated and uninoculated plants. Causality was indicated by experiments using sand where little citric acid was lost from the soil solution over 2 h and citric acid at low concentrations desorbed P into the soil solution. Senesced leaf P concentration was often low and P‐resorption efficiencies reached >90%. In conclusion, we propose that mycorrhizally mediated resource partitioning occurred because inoculation reduced rhizosphere carboxylates, but increased plant P uptake. Hence, presumably, the proportion of plant P acquired from strongly sorbed sources decreased with inoculation, while the proportion from labile inorganic P increased. Implications for plant fitness under field conditions now require investigation.  相似文献   
979.
980.
Biofilm formation in Bacillus subtilis requires the differentiation of a subpopulation of cells responsible for the production of the extracellular matrix that structures the biofilm. Differentiation of matrix‐producing cells depends, among other factors, on the FloT and YqfA proteins. These proteins are present exclusively in functional membrane microdomains of B. subtilis and are homologous to the eukaryotic lipid raft‐specific flotillin proteins. In the absence of FloT and YqfA, diverse proteins normally localized to the membrane microdomains of B. subtilis are not functional. Here we show that the absence of FloT and YqfA reduces the level of the septal‐localized protease FtsH. The flotillin homologues FloT and YqfA are occasionally present at the midcell in exponentially growing cells and the absence of FloT and YqfA negatively affects FtsH concentration. Biochemical experiments indicate a direct interaction between FloT/YqfA and FtsH. Moreover, FtsH is essential for the differentiation of matrix producers and hence, biofilm formation. This molecular trigger of biofilm formation may therefore be used as a target for the design of new biofilm inhibitors. Accordingly, we show that the small protein SpoVM, known to bind to and inhibit FtsH activity, inhibits biofilm formation in B. subtilis and other distantly related bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号