首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   16篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   12篇
  2014年   16篇
  2013年   22篇
  2012年   17篇
  2011年   20篇
  2010年   15篇
  2009年   12篇
  2008年   22篇
  2007年   15篇
  2006年   9篇
  2005年   9篇
  2004年   11篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   6篇
  1999年   8篇
  1998年   8篇
  1997年   4篇
  1996年   6篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有255条查询结果,搜索用时 15 毫秒
11.
Abstract

Opportunistic sightings and strandings of Caperea marginata (n=196) from the vicinity of Australia and New Zealand (1884 to early 2007) were used to relate geographic and temporal patterns to oceanographic and broad-scale climatic variability. Records were not uniformly distributed along the coast and more (69%) were from Australia than New Zealand. Seven coastal whale ‘hotspots’ were identified which accounted for 61% of records with locality data. Half of the hotspot records were from southeast (37) and northwest (20) Tasmania—others each had 9–15 events. Upwelling and/or high zooplankton abundance has been documented near all whale hotspots. Records of C. marginata occurred in all months, with 75% in spring and summer. Inter-annual variability showed broad agreement between increased whale records (usually in spring/summer) and strongly positive ‘Niño 3.4’ during 1980–1995 but not thereafter. Coastal upwelling and productivity increase during climatic phenomena such as El Niño and are likely to be quickly beneficial to plankton-feeding whales such as C. marginata.  相似文献   
12.
13.
14.
Dual-specific T cells combine proliferation and antitumor activity   总被引:4,自引:0,他引:4  
An effective immune response against cancer requires the activation and expansion of specific T cells. Tumor antigens, however, are generally poor immunogens. To achieve expansion of tumor-reactive T cells in vivo, we used a strategy of generating dual-specific T cells that could respond to a powerful immunogen while also possessing tumor reactivity. We generated dual-specific T cells by genetic modification of alloreactive T cells with a chimeric receptor recognizing folate-binding protein, an ovarian cancer-associated antigen. Mouse dual-specific T cells responded in vitro to both allogeneic antigen and tumor cells expressing folate-binding protein, and expanded in number in vivo in response to immunization with allogeneic cells. Most importantly, the combination of dual-specific T cells and immunization had an antitumor effect in vivo. We also generated human dual-specific T cells and characterized the dual-specific nature of individual clones. Assigning the tasks of expansion and tumor reactivity to different receptors within the same lymphocyte may help to overcome the problem of poor immunogenicity of tumor antigens.  相似文献   
15.
Glucosidase I is an important enzyme in N-linked glycoprotein processing, removing specifically distal alpha-1,2-linked glucose from the Glc3Man9GlcNAc2 precursor after its en bloc transfer from dolichyl diphosphate to a nascent polypeptide chain in the endoplasmic reticulum. We have identified a glucosidase I defect in a neonate with severe generalized hypotonia and dysmorphic features. The clinical course was progressive and was characterized by the occurrence of hepatomegaly, hypoventilation, feeding problems, seizures, and fatal outcome at age 74 d. The accumulation of the tetrasaccharide Glc(alpha1-2)Glc(alpha1-3)Glc(alpha1-3)Man in the patient's urine indicated a glycosylation disorder. Enzymological studies on liver tissue and cultured skin fibroblasts revealed a severe glucosidase I deficiency. The residual activity was <3% of that of controls. Glucosidase I activities in cultured skin fibroblasts from both parents were found to be 50% of those of controls. Tissues from the patient subjected to SDS-PAGE followed by immunoblotting revealed strongly decreased amounts of glucosidase I protein in the homogenate of the liver, and a less-severe decrease in cultured skin fibroblasts. Molecular studies showed that the patient was a compound heterozygote for two missense mutations in the glucosidase I gene: (1) one allele harbored a G-->C transition at nucleotide (nt) 1587, resulting in the substitution of Arg at position 486 by Thr (R486T), and (2) on the other allele a T-->C transition at nt 2085 resulted in the substitution of Phe at position 652 by Leu (F652L). The mother was heterozygous for the G-->C transition, whereas the father was heterozygous for the T-->C transition. These base changes were not seen in 100 control DNA samples. A causal relationship between the alpha-glucosidase I deficiency and the disease is postulated.  相似文献   
16.
Based on the tertiary structure of the ribosome-inactivating protein alpha-sarcin, domains that are responsible for hydrolyzing ribosomes and naked RNA have been dissected. In this study, we found that the head-to-tail interaction between the first amino beta-strand and the last carboxyl beta-strand is not involved in catalyzing the hydrolysis of ribosomes or ribonucleic acids. Instead, a four-strand pleated beta-sheet is indispensable for catalyzing both substrates, suggesting that alpha-sarcin and ribonuclease T1 (RNase T1) share a similar catalytic center. The integrity of an amino beta-hairpin and that of the loop L3 in alpha-sarcin are crucial for recognizing and hydrolyzing ribosomes in vitro and in vivo. However, a mutant protein without the beta-hairpin structure, or with a disrupted loop L3, is still capable of digesting ribonucleic acids. The functional involvement of the beta-hairpin and the loop L3 in the sarcin stem/loop RNA of ribosomes is demonstrated by a docking model, suggesting that the two structures are in essence naturally designed to distinguish ribosome-inactivating proteins from RNase T1 to inactivate ribosomes.  相似文献   
17.
Tsai  CM; Chen  WH; Balakonis  PA 《Glycobiology》1998,8(4):359-365
Group B and C Neisseria meningitidis are the major cause of meningococcal disease in the United States and in Europe. N . meningitidis lipooligosaccharide (LOS), a major surface antigen, can be divided into 12 immunotypes of which L1 through L8 were found among Group B and C organisms. Groups B and C but not Group A may sialylate their LOSs with N-acetylneuraminic acid (NeuNAc) at the nonreducing end because they synthesize CMP-NeuNAc. Using sialic acid-galactose binding lectins as probes in an ELISA format, six of the eight LOS immunotypes (L2, L3, L4, L5, L7, and L8) in Groups B and C bound specifically to Maackia amurensis leukoagglutinin (MAL), which recognizes NeuNAcalpha2- 3Galbeta1-4GlcNAc/Glc sequence, but not to Sambucus nigra agglutinin, which binds NeuNAcalpha2-6Gal sequence. The combination of SDS-PAGE and MAL-blot analyses revealed that these six LOSs contained only the NeuNAcalpha2-3Galbeta1-4GlcNAc trisaccharide sequence in their 4.1 kDa LOS components, which have a common terminal lacto-N-neotetraose (LNnT, Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc) structure when nonsialylated as shown by previous studies. The LOS-lectin binding was abolished when the LOSs were treated with Newcastle disease viral neuraminidase which cleaves alpha2-->3 linked sialic acid. Methylation analysis of a representative LOS (L2) confirmed that NeuNAc is 2-->3 linked to Gal. Thus, these LOSs structurally mimic certain glycolipids, i.e., paragloboside (LNnT-ceramide) and sialylparagloboside and some glycoproteins in having LNnT and N-acetyllactosamine sequences, respectively, with or without alpha2-->3 linked NeuNAc. The molecular mimicry of the LOSs may play a role in the pathogenesis of N.meningitidis by assisting the organism to evade host immune defenses in man.   相似文献   
18.
Summary : FT is a tool written in C++, which implements the Fourier analysis method to locate periodicities in aminoacid or DNA sequences. It is provided for free public use on a WWW server with a Java interface. Availability : The server address is http://o2.db. uoa.gr/FT Contact : shamodr@atlas.uoa.gr   相似文献   
19.
Immunoglobulin E (IgE)-mediated type I allergies affect over 25% of the world's population; they are among the most common diseases in developed countries. Therefore, simple and rapid in vivo and in vitro methods for diagnosing allergies are becoming increasingly important. In this paper, we demonstrate the feasibility of using sulforhodamine B, a fluorescent dye, entrapped inside immunoliposomes, the outer surfaces of which were sensitized with IgE, as a signal amplifier for the development of a simple, rapid, and inexpensive colorimetric affinity chromatographic immunoassay for the detection of total IgE in serum. This assay operates based on competition between standards (or human serum samples) containing IgE and IgE-sensitized immunoliposomes for the limited number of antigen binding sites of immobilized anti-IgE antibodies at the antigen capture (AC) zone on the nitrocellulose membranes. The color density of the AC zone is indirectly proportional to the number of IgE units present in the test sample. The detection limit of this liposome-based immunoaffinity chromatographic assay was 0.37 ng in IgE-free serum solution (equivalent to 20 μL of a 18.5 ng mL−1 solution). A commercially available ELISA kit was used as a reference method to validate the proposed assay through the analysis of three human serum samples.  相似文献   
20.

Background  

Paulinella chromatophora is a freshwater filose amoeba with photosynthetic endosymbionts (chromatophores) of cyanobacterial origin that are closely related to free-living Prochlorococcus and Synechococcus species (PS-clade). Members of the PS-clade of cyanobacteria contain a proteobacterial form 1A RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) that was acquired by horizontal gene transfer (HGT) of a carboxysomal operon. In rDNA-phylogenies, the Paulinella chromatophore diverged basal to the PS-clade, raising the question whether the HGT occurred before or after the split of the chromatophore ancestor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号