首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2137篇
  免费   88篇
  2225篇
  2024年   4篇
  2023年   11篇
  2022年   38篇
  2021年   48篇
  2020年   27篇
  2019年   51篇
  2018年   57篇
  2017年   36篇
  2016年   86篇
  2015年   118篇
  2014年   124篇
  2013年   157篇
  2012年   214篇
  2011年   204篇
  2010年   130篇
  2009年   106篇
  2008年   161篇
  2007年   144篇
  2006年   88篇
  2005年   93篇
  2004年   78篇
  2003年   65篇
  2002年   42篇
  2001年   28篇
  2000年   29篇
  1999年   25篇
  1998年   7篇
  1997年   5篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1992年   9篇
  1991年   4篇
  1989年   3篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1967年   3篇
  1965年   1篇
排序方式: 共有2225条查询结果,搜索用时 15 毫秒
11.
Analysis of the CTX prophage and RS1 element in hybrid and altered Vibrio cholera O1 strains showed two classifiable groups. Group I strains contain a tandem repeat of classical CTX prophage on the small chromosome. Strains in this group either contain no element(s) or an additional CTX prophage or RS1 element(s) on the large chromosome. Group II strains harbor RS1 and CTX prophage, which has an E1 Tor type rstR and classical ctxB on the large chromosome.  相似文献   
12.
We previously demonstrated caspase-mediated cleavage of p130cas during apoptosis and identified two caspase-3 cleavage sites [1]. In this study, we investigated the phosphorylation-dependent cleavage of p130cas in apoptotic Rat-1 fibroblast cells. Lysophosphatidic acid and fibronectin induced p130cas phosphorylation, which in turn resulted in resistance to caspase-mediated cleavage. Alternatively, dephosphorylation by calf intestinal alkaline phosphatase, PP1, and LAR stimulated cleavage of p130cas by caspase-3, generating a 31-kDa fragment. During apoptosis, p130cas dephosphorylation seems to precede its cleavage. The phosphorylation of tyrosine and serine residues immediately adjacent to the two cleavage sites (DVPD(416) and DSPD(748)) strongly affected p130cas cleavage by caspase-3, both in vitro and in vivo. Furthermore, the generation of the 31-kDa cleavage fragment was strongly regulated by phosphorylation of a tyrosine residue at position 751 (DSPD(748) and GQY(751)). Our results collectively suggest that degradation of p130cas during apoptosis is modulated in a phosphorylation-dependent manner.  相似文献   
13.
Agonist and depolarization-induced vascular smooth muscle contractions involve the activation of Rho-kinase pathway. However, there are no reports addressing the question whether this pathway is involved in NaF-induced vascular contractions. We hypothesized that Rho-kinase plays a role in vascular contraction evoked by sodium fluoride in rat aortae. In both physiological salt solution and calcium-free solution with 2 mM EGTA, cumulative addition of NaF increased vascular tension in concentration-dependent manners. Effects of Rho-kinase inhibitor (Y27632) on phosphorylation of myosin light chain (MLC20) and myosin targeting subunit (MYPT1(Thr696)) of myosin light chain phosphatase as well as NaF-induced contractions were determined using isolated tissue and the Western blot experiments. Y27632 inhibited NaF-induced contractions in a concentration-dependent manner. NaF increased phosphorylation of MLC20 and MYPT1(Thr696), which were also inhibited by Y27632. However, MLCK inhibitor (ML-7) or PKC inhibitor (Ro31-8220) did not inhibit the NaF-induced contraction. These results indicate that activation of Rho-kinase and the subsequent phosphorylation of MYPT1(Thr696) play important roles in NaF-induced contraction of rat aortae.  相似文献   
14.
In plants, reactive oxygen species (ROS) are short-lived molecules produced through various cellular mechanisms in response to biotic and abiotic stimuli. ROS function as second messengers for hormone signaling, development, oxygen deprivation, programmed cell death, and plant–pathogen interactions. Recent research on ROS-mediated responses has produced stimulating findings such as the specific sources of ROS production, molecular elements that work in ROS-mediated signaling and homeostasis, and a ROS-regulated gene network (Neill et al., Curr Opin Plant Biol 5:388–395, 2002a; Apel and Hirt, Annu Rev Plant Biol 55:373–399, 2004; Mittler et al., Trends Plant Sci 9:490–498, 2004; Mori and Schroeder, Plant Physiol 135:702–708, 2004; Kwak et al., Plant Physiol 141:323–329, 2006; Torres et al., Plant Physiol 141:373–378, 2006; Miller et al., Physiol Plant 133:481–489, 2008). In this review, we highlight new discoveries in ROS-mediated abscisic acid (ABA) signaling. Drs. Daeshik Cho and June M. Kwak are the corresponding authors for this paper.  相似文献   
15.

Background

GPi (Internal globus pallidus) DBS (deep brain stimulation) is recognized as a safe, reliable, reversible and adjustable treatment in patients with medically refractory dystonia.

Objectives

This report describes the long-term clinical outcome of 36 patients implanted with GPi DBS at the Neurosurgery Department of Seoul National University Hospital.

Methods

Nine patients with a known genetic cause, 12 patients with acquired dystonia, and 15 patients with isolated dystonia without a known genetic cause were included. When categorized by phenomenology, 29 patients had generalized, 5 patients had segmental, and 2 patients had multifocal dystonia. Patients were assessed preoperatively and at defined follow-up examinations postoperatively, using the Burke-Fahn-Marsden dystonia rating scale (BFMDRS) for movement and functional disability assessment. The mean follow-up duration was 47 months (range, 12–84)

Results

The mean movement scores significantly decreased from 44.88 points preoperatively to 26.45 points at 60-month follow up (N = 19, P = 0.006). The mean disability score was also decreased over time, from 11.54 points preoperatively to 8.26 points at 60-month follow up, despite no statistical significance (N = 19, P = 0.073). When analyzed the movement and disability improvement rates at 12-month follow up point, no significant difference was noted according to etiology, disease duration, age at surgery, age of onset, and phenomenology. However, the patients with DYT-1 dystonia and isolated dystonia without a known genetic cause showed marked improvement.

Conclusions

GPi DBS is a safe and efficient therapeutic method for treatment of dystonia patients to improve both movement and disability. However, this study has some limitations caused by the retrospective design with small sample size in a single-center.  相似文献   
16.

Background

Pharmacoresistance is a major issue in the treatment of epilepsy. However, the mechanism underlying pharmacoresistance to antiepileptic drugs (AEDs) is still unclear, and few animal models have been established for studying drug resistant epilepsy (DRE). In our study, spontaneous recurrent seizures (SRSs) were investigated by video-EEG monitoring during the entire procedure.

Methods/Principal Findings

In the mouse pilocarpine-induced epilepsy model, we administered levetiracetam (LEV) and valproate (VPA) in sequence. AED-responsive and AED-resistant mice were naturally selected after 7-day treatment of LEV and VPA. Behavioral tests (open field, object exploration, elevated plus maze, and light-dark transition test) and a microRNA microarray test were performed. Among the 37 epileptic mice with SRS, 23 showed significantly fewer SRSs during administration of LEV (n = 16, LEV sensitive (LS) group) or VPA (n = 7, LEV resistant/VPA sensitive (LRVS) group), while 7 epileptic mice did not show any amelioration with either of the AEDs (n = 7, multidrug resistant (MDR) group). On the behavioral assessment, MDR mice displayed distinctive behaviors in the object exploration and elevated plus maze tests, which were not observed in the LS group. Expression of miRNA was altered in LS and MDR groups, and we identified 4 miRNAs (miR-206, miR-374, miR-468, and miR-142-5p), which were differently modulated in the MDR group versus both control and LS groups.

Conclusion

This is the first study to identify a pharmacoresistant subgroup, resistant to 2 AEDs, in the pilocarpine-induced epilepsy model. We hypothesize that modulation of the identified miRNAs may play a key role in developing pharmacoresistance and behavioral alterations in the MDR group.  相似文献   
17.
18.
19.
Structural chemoproteomics and drug discovery   总被引:1,自引:0,他引:1  
Shin D  Heo YS  Lee KJ  Kim CM  Yoon JM  Lee JI  Hyun YL  Jeon YH  Lee TG  Cho JM  Ro S 《Biopolymers》2005,80(2-3):258-263
Our laboratories have developed several technologies to accelerate drug discovery process on the basis of structural chemoproteomics. They include SPS technology for the efficient determination of protein structures, SCP technology for the rapid lead generation and SDF technology for the productive lead optimization. Using these technologies, we could determine many 3D structures of target proteins bound with biologically active chemicals including the structure of phosphodiesterase 5/Viagra complex and obtain highly potent compounds in animal models of obesity, diabetes, cancer and inflammation. In this paper, we will discuss concepts and applications of structural chemoproteomics for drug discovery.  相似文献   
20.
Intractable wound healing is the habitual problem of diabetes mellitus. High blood glucose limits wound healing by interrupting inflammatory responses and inhibiting neoangiogenesis. Oxidative stress is commonly thought to be a major pathogenic cause of diabetic complications. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one, EDV) is a free radical scavenger which suppress oxidative stress. This study investigates whether EDV can reduce oxidative stress in wound healing HaCaT/human dermal fibroblasts cells (HDFs) in vitro and in vivo animal model. Cell viability and wound healing assays, FACS flow cytometry, and Hoechst 33342 staining were performed to confirm apoptosis and cytotoxicity in H2O2 and EDV-treated HaCaT and HDFs. A streptozotocin-induced hyperglycemic animal model was made in adult C57BL6 mice. Full-thickness skin flap was made on dorsomedial back and re-sutured to evaluate the wound healing process. EDV was delivered slowly in the skin flap with degradable fibrin glue. The flap was monitored and analyzed on postoperative days 1, 3, and 5. CD31/DAPI staining was done to detect newly formed blood vessels. The expression levels of NF-κB, bcl-2, NOX3, and STAT3 proteins in C57BL6 mouse tissues were also examined. The wound healing process in hyper- and normoglycemic mice showed a difference in protein expression, especially in oxidative stress management and angiogenesis. Exogenous H2O2 reduced cell viability in a proportion to the concentration via apoptosis. EDV protected HaCaT cells and HDFs from H2O2 induced reactive oxygen species cell damage and apoptosis. In the mouse model, EDV with fibrin resulted in less necrotic areas and increased angiogenesis on postoperative day 5, compared to sham-treated mice. Our results indicate that EDV could protect H2O2-induced cellular injury via inhibiting early apoptosis and inflammation and also increasing angiogenesis. EDV might be valuable in the treatment of diabetic wounds that oxidative stress has been implicated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号