全文获取类型
收费全文 | 5446篇 |
免费 | 408篇 |
国内免费 | 9篇 |
专业分类
5863篇 |
出版年
2023年 | 19篇 |
2022年 | 62篇 |
2021年 | 80篇 |
2020年 | 68篇 |
2019年 | 76篇 |
2018年 | 117篇 |
2017年 | 107篇 |
2016年 | 144篇 |
2015年 | 263篇 |
2014年 | 301篇 |
2013年 | 358篇 |
2012年 | 499篇 |
2011年 | 443篇 |
2010年 | 250篇 |
2009年 | 241篇 |
2008年 | 356篇 |
2007年 | 292篇 |
2006年 | 271篇 |
2005年 | 275篇 |
2004年 | 228篇 |
2003年 | 232篇 |
2002年 | 173篇 |
2001年 | 145篇 |
2000年 | 129篇 |
1999年 | 117篇 |
1998年 | 33篇 |
1997年 | 50篇 |
1996年 | 24篇 |
1995年 | 23篇 |
1994年 | 27篇 |
1993年 | 22篇 |
1992年 | 46篇 |
1991年 | 42篇 |
1990年 | 35篇 |
1989年 | 36篇 |
1988年 | 36篇 |
1987年 | 28篇 |
1986年 | 26篇 |
1985年 | 22篇 |
1984年 | 13篇 |
1983年 | 19篇 |
1982年 | 11篇 |
1979年 | 12篇 |
1978年 | 13篇 |
1977年 | 8篇 |
1976年 | 12篇 |
1975年 | 8篇 |
1974年 | 8篇 |
1972年 | 8篇 |
1971年 | 8篇 |
排序方式: 共有5863条查询结果,搜索用时 14 毫秒
91.
92.
93.
Jin Il Kim Min-Woong Hwang Ilseob Lee Sehee Park Sangmoo Lee Joon-Yong Bae Jun Heo Donghwan Kim Seok-Il Jang Mee Sook Park Hyung-Joo Kwon Jin-Won Song Man-Seong Park 《Biochemical and biophysical research communications》2014
By nature of their segmented RNA genome, influenza A viruses (IAVs) have the potential to generate variants through a reassortment process. The influenza nonstructural (NS) gene is critical for a virus to counteract the antiviral responses of the host. Therefore, a newly acquired NS segment potentially determines the replication efficiency of the reassortant virus in a range of different hosts. In addition, the C-terminal PDZ-binding motif (PBM) has been suggested as a pathogenic determinant of IAVs. To gauge the pandemic potential from human and avian IAV reassortment, we assessed the replication properties of NS-reassorted viruses in cultured cells and in the lungs of mice and determined their transmissibility in guinea pigs. Compared with the recombinant A/Korea/01/2009 virus (rK09; 2009 pandemic H1N1 strain), the rK09/VN:NS virus, in which the NS gene was adopted from the A/Vietnam/1203/2004 virus (a human isolate of the highly pathogenic avian influenza H5N1 virus strains), exhibited attenuated virulence and reduced transmissibility. However, the rK09/VN:NS-PBM virus, harboring the PBM in the C-terminus of the NS1 protein, recovered the attenuated virulence of the rK09/VN:NS virus. In a guinea pig model, the rK09/VN:NS-PBM virus showed even greater transmission efficiency than the rK/09 virus. These results suggest that the PBM in the NS1 protein may determine viral persistence in the human and avian IAV interface. 相似文献
94.
Sung‐Je Moon Jae‐Hoon Kim Young‐Keun Choi Chul‐Ho Lee Jung Hwan Hwang 《Journal of cellular and molecular medicine》2020,24(15):8814-8825
The growth arrest and DNA damage‐inducible beta (Gadd45β) protein have been associated with various cellular functions, but its role in progressive renal disease is currently unknown. Here, we examined the effect of Gadd45β deletion on cell proliferation and apoptosis, inflammation, and renal fibrosis in an early chronic kidney disease (CKD) mouse model following unilateral ureteral obstruction (UUO). Wild‐type (WT) and Gadd45β‐knockout (KO) mice underwent either a sham operation or UUO and the kidneys were sampled eight days later. A histological assay revealed that ablation of Gadd45β ameliorated UUO‐induced renal injury. Cell proliferation was higher in Gadd45β KO mouse kidneys, but apoptosis was similar in both genotypes after UUO. Expression of pro‐inflammatory cytokines after UUO was down‐regulated in the kidneys from Gadd45β KO mice, whereas UUO‐mediated immune cell infiltration remained unchanged. The expression of pro‐inflammatory cytokines in response to LPS stimulation decreased in bone marrow‐derived macrophages from Gadd45β KO mice compared with that in WT mice. Importantly, UUO‐induced renal fibrosis was ameliorated in Gadd45β KO mice unlike in WT mice. Gadd45β was involved in TGF‐β signalling pathway regulation in kidney fibroblasts. Our findings demonstrate that Gadd45β plays a crucial role in renal injury and may be a therapeutic target for the treatment of CKD. 相似文献
95.
Acetylation changes tau interactome to degrade tau in Alzheimer’s disease animal and organoid models
Heesun Choi Haeng Jun Kim Jinhee Yang Sehyun Chae Wonik Lee Sunwoo Chung Jisoo Kim Hyunjung Choi Hyeseung Song Chang Kon Lee Jae Hyun Jun Yong Jae Lee Kyunghyeon Lee Semi Kim Hye‐ri Sim Young Il Choi Keun Ho Ryu Jong‐Chan Park Dongjoon Lee Sun‐Ho Han Daehee Hwang Jangbeen Kyung Inhee Mook‐Jung 《Aging cell》2020,19(1)
Alzheimer's disease (AD) is an age‐related neurodegenerative disease. The most common pathological hallmarks are amyloid plaques and neurofibrillary tangles in the brain. In the brains of patients with AD, pathological tau is abnormally accumulated causing neuronal loss, synaptic dysfunction, and cognitive decline. We found a histone deacetylase 6 (HDAC6) inhibitor, CKD‐504, changed the tau interactome dramatically to degrade pathological tau not only in AD animal model (ADLPAPT) brains containing both amyloid plaques and neurofibrillary tangles but also in AD patient‐derived brain organoids. Acetylated tau recruited chaperone proteins such as Hsp40, Hsp70, and Hsp110, and this complex bound to novel tau E3 ligases including UBE2O and RNF14. This complex degraded pathological tau through proteasomal pathway. We also identified the responsible acetylation sites on tau. These dramatic tau‐interactome changes may result in tau degradation, leading to the recovery of synaptic pathology and cognitive decline in the ADLPAPT mice. 相似文献
96.
Gutless adenoviruses (GAds), namely, all gene-deleted adenoviruses, were developed to minimize their immune responses and toxic effects for a successful gene delivery tool in gene therapy. The Cre/loxP system has been widely used for GAd production. To produce GAd with a low amount of helper adenovirus (HAd) as byproduct, it is indispensable to use 293Cre cells expressing a high level of Cre for GAd production. In this study, we constructed the HAd containing enhanced green fluorescent protein gene flanked by two parallel loxP sites (HAd/GFP). The use of HAd/GFP with flow cytometry allows one to select 293Cre cells expressing a high level of Cre without using conventional Western blot analysis. Unlike conventional HAd titration methods such as plaque assay and end-point dilution assay, it also allows one to monitor rapidly the HAd as byproduct in earlier stages of GAd amplification. Taken together, the use of HAd/GFP with flow cytometry facilitates bioprocess development for efficient GAd production. 相似文献
97.
Juntaek Oh Eunhye Goo Ingyu Hwang Sangkee Rhee 《The Journal of biological chemistry》2014,289(16):11465-11475
The Burkholderia species utilize acetyl-CoA and oxaloacetate, substrates for citrate synthase in the TCA cycle, to produce oxalic acid in response to bacterial cell to cell communication, called quorum sensing. Quorum sensing-mediated oxalogenesis via a sequential reaction by ObcA and ObcB counteracts the population-collapsing alkaline pH of the stationary growth phase. Thus, the oxalic acid produced plays an essential role as an excreted public good for survival of the group. Here, we report structural and functional analyses of ObcA, revealing mechanistic features distinct from those of citrate synthase. ObcA exhibits a unique fold, in which a (β/α)8-barrel fold is located in the C-domain with the N-domain inserted into a loop following α1 in the barrel fold. Structural analyses of the complexes with oxaloacetate and with a bisubstrate adduct indicate that each of the oxaloacetate and acetyl-CoA substrates is bound to an independent site near the metal coordination shell in the barrel fold. In catalysis, oxaloacetate serves as a nucleophile by forming an enolate intermediate mediated by Tyr322 as a general base, which then attacks the thioester carbonyl carbon of acetyl-CoA to yield a tetrahedral adduct between the two substrates. Therefore, ObcA catalyzes its reaction by combining the enolase and acetyltransferase superfamilies, but the presence of the metal coordination shell and the absence of general acid(s) produces an unusual tetrahedral CoA adduct as a stable product. These results provide the structural basis for understanding the first step in oxalogenesis and constitute an example of the functional diversity of an enzyme for survival and adaptation in the environment. 相似文献
98.
We have previously shown that the cultured L6 myoblasts are susceptible to menadione-induced oxidative stress. Damaged cells were detached from the culture dishes. In the present study, we focused on focal adhesion kinase (FAK), which plays pivotal roles in maintaining focal adhesion function and cell survival. FAK, normally localized at the focal adhesion regions of the myoblasts, was not observed at the regions under oxidative stress induced by menadione and H(2) O(2) . Two cleavage products, 80-kDa N-terminal FAK and 35-kDa C-terminal FAK fragments, as well as full-length FAK (125?kDa) were detected in myoblasts cultured under normal conditions by western blotting with anti-N-terminal FAK or anti-C-terminal FAK sera. Of interest was the finding that the cleavage products of FAK (but not full-length FAK) disappeared under oxidative stress. The cleavage of full-length FAK to N-terminal FAK and C-terminal FAK was inhibited by calpeptin, a specific calpain inhibitor. In addition, pre-incubation of cells with calpeptin resulted in a sharp decrease in survival signals, such as Akt phosphorylation and the ratio of Bcl-2/Bax, under stress conditions. By contrast, not only relative viability, but also Akt phosphorylation and the ratio of Bcl-2/Bax was significantly improved when cells were transfected with a DNA construct of N-terminal FAK-Myc. These results suggest that the N-terminal FAK positively regulates survival signalling in early phases of oxidative stress in the cultured myoblasts. 相似文献
99.
Song WY Sohn EJ Martinoia E Lee YJ Yang YY Jasinski M Forestier C Hwang I Lee Y 《Nature biotechnology》2003,21(8):914-919
We have studied the utility of the yeast protein YCF1, which detoxifies cadmium by transporting it into vacuoles, for the remediation of lead and cadmium contamination. We found that the yeast YCF1-deletion mutant DTY167 was hypersensitive to Pb(II) as compared with wild-type yeast. DTY167 cells overexpressing YCF1 were more resistant to Pb(II) and Cd(II) than were wild-type cells, and accumulated more lead and cadmium. Analysis of transgenic Arabidopsis thaliana plants overexpressing YCF1 showed that YCF1 is functionally active and that the plants have enhanced tolerance of Pb(II) and Cd(II) and accumulated greater amounts of these metals. These results suggest that transgenic plants expressing YCF1 may be useful for phytoremediation of lead and cadmium. 相似文献
100.
Nitric oxide (NO) in articular chondrocytes regulates differentiation, survival, and inflammatory responses by modulating ERK-1 and -2, p38 kinase, and protein kinase C (PKC) alpha and zeta. In this study, we investigated the effects of the actin cytoskeletal architecture on NO-induced dedifferentiation, apoptosis, cyclooxygenase (COX)-2 expression, and prostaglandin E2 production in articular chondrocytes, with a focus on ERK-1/-2, p38 kinase, and PKC signaling. Disruption of the actin cytoskeleton by cytochalasin D (CD) inhibited NO-induced apoptosis, dedifferentiation, COX-2 expression, and prostaglandin E2 production in chondrocytes cultured on plastic or during cartilage explants culture. CD treatment did not affect ERK-1/-2 activation but blocked the signaling events necessary for NO-induced dedifferentiation, apoptosis, and COX-2 expression such as activation of p38 kinase and inhibition of PKCalpha and -zeta. CD also suppressed activation of downstream signaling of p38 kinase and PKC, such as NF-kappaB activation, p53 accumulation, and caspase-3 activation, which are necessary for NO-induced apoptosis. NO production in articular chondrocytes caused down-regulation of phosphatidylinositol (PI) 3-kinase and Akt activities. The down-regulation of PI 3-kinase and Akt was blocked by CD treatment, and the CD effects on apoptosis, p38 kinase, and PKCalpha and -zeta were abolished by the inhibition of PI 3-kinase with LY294002. Our results collectively indicate that the actin cytoskeleton mediates NO-induced regulatory effects in chondrocytes by modulating down-regulation of PI 3-kinase and Akt, activation of p38 kinase, and inhibition of PKCalpha and -zeta 相似文献