首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5404篇
  免费   407篇
  国内免费   9篇
  2023年   14篇
  2022年   25篇
  2021年   80篇
  2020年   68篇
  2019年   75篇
  2018年   117篇
  2017年   107篇
  2016年   144篇
  2015年   261篇
  2014年   301篇
  2013年   357篇
  2012年   499篇
  2011年   443篇
  2010年   251篇
  2009年   242篇
  2008年   356篇
  2007年   292篇
  2006年   271篇
  2005年   276篇
  2004年   229篇
  2003年   232篇
  2002年   173篇
  2001年   145篇
  2000年   130篇
  1999年   117篇
  1998年   33篇
  1997年   50篇
  1996年   24篇
  1995年   23篇
  1994年   27篇
  1993年   22篇
  1992年   46篇
  1991年   42篇
  1990年   35篇
  1989年   36篇
  1988年   36篇
  1987年   28篇
  1986年   26篇
  1985年   22篇
  1984年   13篇
  1983年   19篇
  1982年   11篇
  1979年   12篇
  1978年   13篇
  1977年   8篇
  1976年   12篇
  1975年   8篇
  1974年   8篇
  1972年   8篇
  1971年   8篇
排序方式: 共有5820条查询结果,搜索用时 46 毫秒
941.
As part of our continuing search for potential differentiation agents, 1-benzyl-3-(4-pyridinylmethylidenyl)indolin-2-one (14) was selected as lead compound, and its new pyridinyl and quinolinyl analogs were synthesized and evaluated for differentiation-inducing activity toward HL-60 cells. Most of the tested compounds enhanced the ATRA-induced differentiation; among them, 1-(1-phenylethyl)-3-(3-quinolinylmethylidenyl)indolin-2-one (25) was the most promising one. The two isomers, 25Z and 25E; consisting 25 were found to have similar differentiation activity. The combination of 25 with all trans retinoic acid (ATRA) was found to induce complete differentiation of HL-60 cells and arrest the cells in the G(0)/G(1) phase of the cell cycle. Beside its excellent differentiation activity, 25 also exhibited relatively low cytotoxicity toward normal cells. Therefore, compound 25 is recommended as a candidate for further development of novel enhancer of ATRA-induced differentiation in HL-60 cells.  相似文献   
942.
Hong MY  Lee EM  Jo YH  Park HC  Kim SR  Hwang JS  Jin BR  Kang PD  Kim KG  Han YS  Kim I 《Gene》2008,413(1-2):49-57
The 15,360-bp long complete mitogenome of Caligula boisduvalii possesses a gene arrangement and content identical to other completely sequenced lepidopteran mitogenomes, but different from the common arrangement found in most insect order, as the result of the movement of tRNA(Met) to a position 5'-upstream of tRNA Ile. The 330-bp A+T-rich region is apparently capable of forming a stem-and-loop structure, which harbors the conserved flanking sequences at both ends. Dissimilar to what has been seen in other sequenced lepidopteran insects, the initiation codon for C. boisduvalii COI appears to be TTG, which is a rare, but apparently possible initiation codon. The ATP8, ATP6, ND4L, and ND6 genes, which neighbor another PCG at their 3' end, all harbored potential sequences for the formation of a hairpin structure. This is suggestive of the importance of such structures for the precise cleavage of the mRNA of mature PCGs. Phylogenetic analyses of available sequenced species of Bombycoidea, Pyraloidea, and Tortricidea supported the morphology-based current hypothesis that Bombycoidea and Pyraloidea are monophyletic (Obtectomera). As previously suggested, Bombycidae (Bombyx mori and B. mandarina) and Saturniidae (Antheraea pernyi and C. boisduvalii) formed a reciprocal monophyletic group.  相似文献   
943.
944.
Ravikumar KM  Hwang W 《Proteins》2008,72(4):1320-1332
Conformational stability of the collagen triple helix affects its turnover and determines tissue homeostasis. Although it is known that the presence of imino acids (prolines or hydroxyprolines) confer stability to the molecule, little is known regarding the stability of the imino-poor region lacking imino acids, which plays a key role in collagen cleavage. In particular, there have been continuing debates about the role of water in collagen stability. We addressed these issues using molecular dynamics simulations on 30-residue long collagen triple helices, including a structure that has a biologically relevant 9-residue imino-poor region from type III collagen (PDB ID: 1BKV). A torsional map approach was used to characterize the conformational motion of the molecule that differ between imino-rich and imino-poor regions. At temperatures 300 K and above, unwinding initiates at a common cleavage site, the glycine-isoleucine bond in the imino-poor region. This provides a linkage between previous observations that unwinding of the imino-poor region is a requirement for collagenase cleavage, and that isolated collagen molecules are unstable at body temperature. We found that unwinding of the imino-poor region is controlled by dynamic water bridges between backbone atoms with average lifetimes on the order of a few picoseconds, as the degree of unwinding strongly correlated with the loss of water bridges, and unwinding could be either prevented or enhanced, respectively by enforcing or forbidding water bridge formation. While individual water bridges were short-lived in the imino-poor region, the hydration shell surrounding the entire molecule was stable even at 330 K. The diameter of the hydrated collagen including the first hydration shell was about 14 A, in good agreement with the experimentally measured inter-collagen distances. These results elucidate the general role of water in collagen turnover: water not only affects collagen cleavage by controlling its torsional motion, but it also forms a larger-scale lubrication layer mediating collagen self-assembly.  相似文献   
945.
946.
Huang CL  Hwang SY  Chiang YC  Lin TP 《Genetics》2008,179(3):1527-1538
Rice blast disease resistance to the fungal pathogen Magnaporthe grisea is triggered by a physical interaction between the protein products of the host R (resistance) gene, Pi-ta, and the pathogen Avr (avirulence) gene, AVR-pita. The genotype variation and resistant/susceptible phenotype at the Pi-ta locus of wild rice (Oryza rufipogon), the ancestor of cultivated rice (O. sativa), was surveyed in 36 locations worldwide to study the molecular evolution and functional adaptation of the Pi-ta gene. The low nucleotide polymorphism of the Pi-ta gene of O. rufipogon was similar to that of O. sativa, but greatly differed from what has been reported for other O. rufipogon genes. The haplotypes can be subdivided into two divergent haplogroups named H1 and H2. H1 is derived from H2, with nearly no variation and at a low frequency. H2 is common and is the ancestral form. The leucine-rich repeat (LRR) domain has a high pi(non)/pi(syn) ratio, and the low polymorphism of the Pi-ta gene might have primarily been caused by recurrent selective sweep and constraint by other putative physiological functions. Meanwhile, we provide data to show that the amino acid Ala-918 of H1 in the LRR domain has a close relationship with the resistant phenotype. H1 might have recently arisen during rice domestication and may be associated with the scenario of a blast pathogen-host shift from Italian millet to rice.  相似文献   
947.
Gonadotropic hormones play an important role in the regulation of emotion. Previous studies have demonstrated that estrogen can modulate appetitive (approach/positive) and aversive (avoidance/negative) affective behaviors during the menstrual cycle. Frontal alpha asymmetry (a measure of relative difference of the alpha power between the two anterior hemispheres) has been associated with the trait and state reactivity of different affective styles. We studied the pattern change of frontal alpha asymmetry across the menstrual cycle. 16 healthy women participated in this resting magneto-encephalographic (MEG) study during the peri-ovulatory (OV) and menstrual (MC) phases. Our results showed significant interaction of resting MEG alpha activity between hemispheric side and menstrual phases. Difference in spontaneous frontal alpha asymmetry pattern across the menstrual cycle was also noted. Relatively higher right frontal activity was found during the OV phase; relatively higher left frontal activity was noted during the MC phase. The alteration of frontal alpha asymmetry might serve a sub-clinical correlate for hormonal modulation effect on dynamic brain organization for the predisposition and conceptualization of different affective styles across the menstrual cycle.  相似文献   
948.
In Chl biosynthesis, aerobic Mg-protoporphyrin IX monomethyl ester (MPE) cyclase is a key enzyme involved in the synthesis of protochlorophyllide a, and its membrane-bound component is known to be encoded by homologs of CHL27 in photosynthetic bacteria, green algae and plants. Here, we report that the Arabidopsis chl27-t knock-down mutant exhibits retarded growth and chloroplast developmental defects that are caused by damage to PSII reaction centers. The mutant contains a T-DNA insertion within the CHL27 promoter that dramatically reduces the CHL27 mRNA level. chl27-t mutant plants grew slowly with a pale green appearance, suggesting that they are defective in Chl biosynthesis. Chl fluorescence analysis showed significantly low photosynthetic activity in chl27-t mutants, indicating damage in their PSII reaction centers. The chl27-t mutation also conferred severe defects in chloroplast development, including the unstacking of thylakoid membranes. Microarray analysis of the chl27-t mutant showed repression of numerous nuclear genes involved in photosynthesis, including those encoding components of light-harvesting complex I (LHCI) and LHCII, and PSI and PSII, which accounts for the defects in photosynthetic activity and chloroplast development. In addition, the microarray data also revealed the significant repression of genes such as PORA and AtFRO6 for Chl biosynthesis and iron acquisition, respectively, and, furthermore, implied that there is cross-talk in the Chl biosynthetic pathway among the PORA, AtFRO6 and CHL27 proteins.  相似文献   
949.
We define the photoresponsiveness, during seedling de-etiolation,of PHYTOCHROME-INTERACTING FACTOR 3-LIKE 1 (PIL1), initiallyidentified by microarray analysis as an early-response genethat is robustly repressed by first exposure to light. We showthat PIL1 mRNA abundance declines rapidly, with a half-timeof 15 min, to a new steady-state level, 10-fold below the initialdark level, within 45 min of first exposure to red light. Analysisof phy-null mutants indicates that multiple phytochromes, includingphyA and phyB, impose this repression. Conversely, PIL1 expressionis rapidly derepressed by subsequent far-red irradiation ofpreviously red light-exposed seedlings. However, the magnitudeof this derepression is modulated over time, in a biphasic manner,in response to increasing duration of pre-exposure to continuousred light: (i) an early phase (up to about 6 h) of relativelyrapidly increasing effectiveness of far-red reversal of repression,as declining phyA levels relieve initial very low fluence suppressionof this response; and (ii) a second phase (beyond 6 h) of graduallydeclining effectiveness of far-red reversal, to only 20% ofmaximal derepression, within 36 h of continuous red light exposure,with no evidence of circadian modulation of this responsiveness,an observation in striking contrast to a previous report forentrained, green seedlings exposed to vegetative shade. Thesedata, together with analysis of phytochrome signaling mutantsand overexpressors with aberrant de-etiolation phenotypes, suggestthat the second-phase decline in robustness of PIL1 derepressionis an indirect consequence of the global developmental transitionfrom the etiolated to the de-etiolated state, and that circadiancoupling of derepression requires entrainment.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号