首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138244篇
  免费   3666篇
  国内免费   827篇
  2023年   148篇
  2022年   459篇
  2021年   922篇
  2020年   573篇
  2019年   699篇
  2018年   12561篇
  2017年   11271篇
  2016年   8729篇
  2015年   2911篇
  2014年   2963篇
  2013年   3309篇
  2012年   8040篇
  2011年   16231篇
  2010年   14079篇
  2009年   10167篇
  2008年   12587篇
  2007年   14001篇
  2006年   2815篇
  2005年   2863篇
  2004年   3147篇
  2003年   2887篇
  2002年   2389篇
  2001年   1558篇
  2000年   1389篇
  1999年   1020篇
  1998年   404篇
  1997年   360篇
  1996年   256篇
  1995年   211篇
  1994年   216篇
  1993年   201篇
  1992年   349篇
  1991年   333篇
  1990年   274篇
  1989年   233篇
  1988年   191篇
  1987年   176篇
  1986年   132篇
  1985年   107篇
  1984年   86篇
  1983年   102篇
  1982年   65篇
  1981年   54篇
  1980年   55篇
  1979年   70篇
  1978年   51篇
  1977年   51篇
  1974年   64篇
  1972年   279篇
  1971年   308篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
982.
983.
Digitate siliceous hot spring deposits are a form of biomediated sinter that is relatively common in the Taupo Volcanic Zone (TVZ), New Zealand, and elsewhere on Earth. Such deposits have gained prominence recently because of their morphological similarity to opaline silica rocks of likely hot spring origin found by the Spirit rover on Mars and the consequent implications for potential biosignatures there. Here, we investigate the possible relationship between microbial community composition and morphological diversity among digitate structures from actively forming siliceous hot spring sinters depositing subaerially in shallow discharge channels and around pool rims at several physicochemically distinct geothermal fields in the TVZ. The TVZ digitate sinters range in morphologic subtype from knobby to spicular, and are shown to be microstromatolites that grow under varied pH ranges, temperatures, and water chemistries. Scanning electron microscopy and molecular analyses revealed that TVZ digitate sinters are intimately associated with a diverse array of bacterial, archaeal and eukaryotic micro‐organisms, and for most digitate structures the diversity and quantity of prokaryotes was higher than that of eukaryotes. However, microbial community composition was not correlated with morphologic subtypes of digitate sinter, and observations provided limited evidence that pH (acidic versus alkali) affects morphology. Instead, results suggest hydrodynamics may be an important factor influencing variations in morphology, while water chemistry, pH, and temperature are strong drivers of microbial composition and diversity.  相似文献   
984.
Glucose controls the phosphorylation of silent information regulator 2 (Sir2), a NAD+‐dependent protein deacetylase, which regulates the expression of the ATP‐dependent proton pump Pma1 and replicative lifespan (RLS) in yeast. TORC1 signaling, which is a central regulator of cell growth and lifespan, is regulated by glucose as well as nitrogen sources. In this study, we demonstrate that TORC1 signaling controls Sir2 phosphorylation through casein kinase 2 (CK2) to regulate PMA1 expression and cytoplasmic pH (pHc) in yeast. Inhibition of TORC1 signaling by either TOR1 deletion or rapamycin treatment decreased PMA1 expression, pHc, and vacuolar pH, whereas activation of TORC1 signaling by expressing constitutively active GTR1 (GTR1Q65L) resulted in the opposite phenotypes. Deletion of SIR2 or expression of a phospho‐mutant form of SIR2 increased PMA1 expression, pHc, and vacuolar pH in the tor1Δ mutant, suggesting a functional interaction between Sir2 and TORC1 signaling. Furthermore, deletion of TOR1 or KNS1 encoding a LAMMER kinase decreased the phosphorylation level of Sir2, suggesting that TORC1 signaling controls Sir2 phosphorylation. It was also found that Sit4, a protein phosphatase 2A (PP2A)‐like phosphatase, and Kns1 are required for TORC1 signaling to regulate PMA1 expression and that TORC1 signaling and the cyclic AMP (cAMP)/protein kinase A (PKA) pathway converge on CK2 to regulate PMA1 expression through Sir2. Taken together, these findings suggest that TORC1 signaling regulates PMA1 expression and pHc through the CK2–Sir2 axis, which is also controlled by cAMP/PKA signaling in yeast.  相似文献   
985.
Alzheimer's disease (AD) is an age‐related neurodegenerative disease. The most common pathological hallmarks are amyloid plaques and neurofibrillary tangles in the brain. In the brains of patients with AD, pathological tau is abnormally accumulated causing neuronal loss, synaptic dysfunction, and cognitive decline. We found a histone deacetylase 6 (HDAC6) inhibitor, CKD‐504, changed the tau interactome dramatically to degrade pathological tau not only in AD animal model (ADLPAPT) brains containing both amyloid plaques and neurofibrillary tangles but also in AD patient‐derived brain organoids. Acetylated tau recruited chaperone proteins such as Hsp40, Hsp70, and Hsp110, and this complex bound to novel tau E3 ligases including UBE2O and RNF14. This complex degraded pathological tau through proteasomal pathway. We also identified the responsible acetylation sites on tau. These dramatic tau‐interactome changes may result in tau degradation, leading to the recovery of synaptic pathology and cognitive decline in the ADLPAPT mice.  相似文献   
986.
987.
Objective:The purpose of this study was to investigate the difference in back extensor muscle endurance before and after kinesiology tape application to all back stabilizer muscles and to the erector spinae alone.Methods:We assessed 32 adults (16 men and 16 women), randomly divided into two groups. In the erector spinae taping (EST) group, kinesiology tape was applied only to the erector spinae, and in the total muscle taping (TMT) group, kinesiology tape was applied to the erector spinae, latissimus dorsi, lower trapezius, internal oblique abdominis, and external oblique abdominis.Results:Both groups showed significant difference in terms of back extensor muscle endurance after kinesiology tape application (p<0.05). Between-group comparison revealed that the TMT group had more back extensor muscle endurance than the EST group (p<0.05) after kinesiology tape application.Conclusions:These findings indicate that, to improve back extensor muscle endurance, kinesiology tape should be applied to all back stabilizer muscles, rather than to the erector spinae muscles alone.  相似文献   
988.
Crystal structures of enoyl-coenzyme A (CoA) isomerase from Bosea sp. PAMC 26642 (BoECI) and enoyl-CoA hydratase from Hymenobacter sp. PAMC 26628 (HyECH) were determined at 2.35 and 2.70 Å resolution, respectively. BoECI and HyECH are members of the crotonase superfamily and are enzymes known to be involved in fatty acid degradation. Structurally, these enzymes are highly similar except for the orientation of their C-terminal helix domain. Analytical ultracentrifugation was performed to determine the oligomerization states of BoECI and HyECH revealing they exist as trimers in solution. However, their putative ligand-binding sites and active site residue compositions are dissimilar. Comparative sequence and structural analysis revealed that the active site of BoECI had one glutamate residue (Glu135), this site is occupied by an aspartate in some ECIs, and the active sites of HyECH had two highly conserved glutamate residues (Glu118 and Glu138). Moreover, HyECH possesses a salt bridge interaction between Glu98 and Arg152 near the active site. This interaction may allow the catalytic Glu118 residue to have a specific conformation for the ECH enzyme reaction. This salt bridge interaction is highly conserved in known bacterial ECH structures and ECI enzymes do not have this type of interaction. Collectively, our comparative sequential and structural studies have provided useful information to distinguish and classify two similar bacterial crotonase superfamily enzymes.  相似文献   
989.
Staphylococcus aureus is a leading cause of hospital- and community-acquired infections. Despite current advances in antimicrobial chemotherapy, the infections caused by S. aureus remain challenging due to their ability to readily develop resistance. Indeed, antibiotic resistance, exemplified by methicillin-resistant S. aureus (MRSA) is a top threat to global health security. Furthermore, the current rate of antibiotic discovery is much slower than the rate of antibiotic-resistance development. It seems evident that the conventional in vitro bacterial growth-based screening strategies can no longer effectively supply new antibiotics at the rate needed to combat bacterial antibiotic-resistance. To overcome this antibiotic resistance crisis, screening assays based on host–pathogen interactions have been developed. In particular, the free-living nematode Caenorhabditis elegans has been used for drug screening against MRSA. In this review, we will discuss the general principles of the C. elegans-based screening platform and will highlight its unique strengths by comparing it with conventional antibiotic screening platforms. We will outline major hits from high-throughput screens of more than 100,000 small molecules using the C. elegans–MRSA infection assay and will review the mode-of-action of the identified hit compounds. Lastly, we will discuss the potential of a C. elegans-based screening strategy as a paradigm shift screening platform.  相似文献   
990.
Journal of Microbiology - Enterovirus A71 (EV71), the main etiological agent of handfoot- mouth disease (HFMD), circulates in many areas of the world and has caused large epidemics since 1997,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号