首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2098篇
  免费   183篇
  国内免费   1篇
  2023年   3篇
  2022年   15篇
  2021年   42篇
  2020年   29篇
  2019年   25篇
  2018年   52篇
  2017年   58篇
  2016年   66篇
  2015年   134篇
  2014年   156篇
  2013年   161篇
  2012年   207篇
  2011年   199篇
  2010年   138篇
  2009年   91篇
  2008年   128篇
  2007年   112篇
  2006年   115篇
  2005年   110篇
  2004年   83篇
  2003年   86篇
  2002年   84篇
  2001年   38篇
  2000年   20篇
  1999年   30篇
  1998年   13篇
  1997年   11篇
  1996年   8篇
  1995年   10篇
  1994年   9篇
  1993年   2篇
  1992年   9篇
  1991年   7篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   6篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1982年   2篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1967年   2篇
  1961年   1篇
排序方式: 共有2282条查询结果,搜索用时 15 毫秒
41.
Abnormal regulation of Ca2+ mediates tumorigenesis and Ca2+ channels are reportedly deregulated in cancers, indicating that regulating Ca2+ signaling in cancer cells is considered as a promising strategy to treat cancer. However, little is known regarding the mechanism by which Ca2+ affects cancer cell death. Here, we show that 20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol (20-GPPD), a metabolite of ginseng saponin, causes apoptosis of colon cancer cells through the induction of cytoplasmic Ca2+. 20-GPPD decreased cell viability, increased annexin V-positive early apoptosis and induced sub-G1 accumulation and nuclear condensation of CT-26 murine colon cancer cells. Although 20-GPPD-induced activation of AMP-activated protein kinase (AMPK) played a key role in the apoptotic death of CT-26 cells, LKB1, a well-known upstream kinase of AMPK, was not involved in this activation. To identify the upstream target of 20-GPPD for activating AMPK, we examined the effect of Ca2+ on apoptosis of CT-26 cells. A calcium chelator recovered 20-GPPD-induced AMPK phosphorylation and CT-26 cell death. Confocal microscopy showed that 20-GPPD increased Ca2+ entry into CT-26 cells, whereas a transient receptor potential canonical (TRPC) blocker suppressed Ca2+ entry. When cells were treated with a TRPC blocker plus an endoplasmic reticulum (ER) calcium blocker, 20-GPPD-induced calcium influx was completely inhibited, suggesting that the ER calcium store, as well as TRPC, was involved. In vivo mouse CT-26 allografts showed that 20-GPPD significantly suppressed tumor growth, volume and weight in a dose-dependent manner. Collectively, 20-GPPD exerts potent anticarcinogenic effects on colon carcinogenesis by increasing Ca2+ influx, mainly through TRPC channels, and by targeting AMPK.  相似文献   
42.
ABSTRACT

Phenolic compounds isolated from pepper (Capsicum annum) have been demonstrated to have neuroprotective effects, whereas the physiological properties of Capsicum annuum var. abbreviatum (CAA) have not been studied. Thus, we investigate the chemical composition and neuroprotective activity of CAA extract (CAAE) in HT22 hippocampus cells against H2O2-induced neurotoxicity. CAAE treatment resulted in a significant protection of H2O2-exposed HT22, this protection ultimately occurred through an inhibition of MDA and ROS levels and an induction of SOD activity. Furthermore, CAAE treatment reduced H202-induced apoptosis though decreasing the expression of pro-apoptotic factors (Bax, cytochrome c, and cleaved caspases-3) while increasing the expression of the anti-apoptotic factors (Bcl-2), as well as the accumulation of nucleus-Nrf2-mediated HO-1 signaling. Interestingly, CAAE has a high concentration of unique phenolic compositions (chlrogenic acid, tangeretin, etc.) than other capsicum annum extracts. Altogether, these findings suggest that CAAE can be a useful natural resource for alleviating neurodegenerative diseases.  相似文献   
43.
ABSTRACT

As standard second-line regimen has not been established for patients who are refractory to or relapse with cisplatin-based chemotherapy, an effective class of novel chemotherapeutic agents is needed for cisplatin-resistant bladder cancer. Recent publications reported that MutT homolog 1 (MTH1) inhibitors suppress tumor growth and induce impressive therapeutic responses in a variety of human cancer cells. Few studies investigated the cytotoxic effects of MTH1 inhibitors in human bladder cancer. Accordingly, we investigated the antitumor effects and the possible molecular mechanisms of MTH1 inhibitors in cisplatin-sensitive (T24) and – resistant (T24R2) human bladder cancer cell lines. These results suggest that TH588 or TH287 may induce cancer cell suppression by off-target effects such as alterations in the expression of apoptosis- and cell cycle-related proteins rather than MTH1 inhibition in cisplatin-sensitive and – resistant bladder cancer cells.

Abbreviations: MTH: MutT homolog; ROS: reactive oxygen species; CCK-8: cell counting kit-8; DCFH-DA: dichlorofluorescein diacetate; PARP: poly (ADP-ribose) polymerase  相似文献   
44.
Extracellular superoxide dismutase (EC-SOD) is a metalloprotein and functions as an antioxidant enzyme. In this study, we used lentiviral vectors to generate transgenic chickens that express the human EC-SOD gene. The recombinant lentiviruses were injected into the subgerminal cavity of freshly laid eggs. Subsequently, the embryos were incubated to hatch using phases II and III of the surrogate shell ex vivo culture system. Of 158 injected embryos, 16 chicks (G0) hatched and were screened for the hEC-SOD by PCR. Only 1 chick was identified as a transgenic bird containing the transgene in its germline. This founder (G0) bird was mated with wild-type hens to produce transgenic progeny, and 2 transgenic chicks (G1) were produced. In the generated transgenic hens (G2), the hEC-SOD protein was expressed in the egg white and showed antioxidant activity. These results highlight the potential of the chicken for production of biologically active proteins in egg white. [BMB Reports 2013; 46(8): 404-409]  相似文献   
45.
Numerous studies on Oenothera species have been investigated for the physiological and ecological characteristics. However, no such an information based on molecular cytogenetic has yet been introduced, in turn, is very essential for identifying sequence polymorphisms of rRNA genes with their loci on mitotic phases for further biological researches. In this study, sequence variations of rRNA genes in Oenothera odorata and O. laciniata were examined to identify informative factors as unique or repeat sequences in intra- and inter-specific variations. Intra-specific variation revealed that the sequences of the rRNA genes including the spacer regions were highly conserved revealing only a few variations. From the inter-specific variation, spacer regions of species were completely different as (1) non-homologous sequences in NTS and (2) different type repeat sequences in ITS 1, 2 and 5.8S rRNA, whereas the remaining coding regions were highly conserved. FISH was carried out on mitotic phases using the 5S rDNA of the analyzed sequences. From the interphase and metaphase chromosomes of the examined species, two loci of 5S rDNA in O. odorata and four loci in O. laciniata were confirmed on the telomeric region of the short arm. Due to the small size and unclear centromere of the chromosomes, karyotype could not be completed. However, we confirmed that the chromosomes are organized by meta- and acrocentric chromosomes and the chromosomes with identified loci were assumed to be paired by the location of loci at the telomeric region on the short arm with relative lengths.  相似文献   
46.
Cellular stress responses are frequently governed by the subcellular localization of critical effector proteins. Apoptosis-inducing Factor (AIF) or Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH), for example, can translocate from mitochondria to the nucleus, where they modulate apoptotic death pathways. Hypoxia-inducible gene domain 1A (HIGD1A) is a mitochondrial protein regulated by Hypoxia-inducible Factor-1α (HIF1α). Here we show that while HIGD1A resides in mitochondria during physiological hypoxia, severe metabolic stress, such as glucose starvation coupled with hypoxia, in addition to DNA damage induced by etoposide, triggers its nuclear accumulation. We show that nuclear localization of HIGD1A overlaps with that of AIF, and is dependent on the presence of BAX and BAK. Furthermore, we show that AIF and HIGD1A physically interact. Additionally, we demonstrate that nuclear HIGD1A is a potential marker of metabolic stress in vivo, frequently observed in diverse pathological states such as myocardial infarction, hypoxic-ischemic encephalopathy (HIE), and different types of cancer. In summary, we demonstrate a novel nuclear localization of HIGD1A that is commonly observed in human disease processes in vivo.  相似文献   
47.

Objective:

Visceral obesity contributes to the development of obesity‐related disorders such as diabetes, hyperlipidemia, and fatty liver disease, as well as cardiovascular diseases. In this study, we determined whether topical application of capsaicin can reduce fat accumulation in visceral adipose tissues.

Methods and Results:

We first observed that topical application of 0.075% capsaicin to male mice fed a high‐fat diet significantly reduced weight gain and visceral fat. Fat cells were markedly smaller in the mesenteric and epididymal adipose tissues of mice treated with capsaicin cream. The capsaicin treatment also lowered serum levels of fasting glucose, total cholesterol, and triglycerides. Immunoblot analysis and RT‐PCR revealed increased expression of adiponectin and other adipokines including peroxisome proliferator‐activated receptor (PPAR) α, PPARγ, visfatin, and adipsin, but reduced expression of tumor necrosis factor‐α and IL‐6.

Conclusions:

These results indicate that topical application of capsaicin to obese mice limits fat accumulation in adipose tissues and may reduce inflammation and increase insulin sensitivity.  相似文献   
48.
49.
ULK1 (unc-51 like autophagy activating kinase 1), the key mediator of MTORC1 signaling to autophagy, regulates early stages of autophagosome formation in response to starvation or MTORC1 inhibition. How ULK1 regulates the autophagy induction process remains elusive. Here, we identify that ATG13, a binding partner of ULK1, mediates interaction of ULK1 with the ATG14-containing PIK3C3/VPS34 complex, the key machinery for initiation of autophagosome formation. The interaction enables ULK1 to phosphorylate ATG14 in a manner dependent upon autophagy inducing conditions, such as nutrient starvation or MTORC1 inhibition. The ATG14 phosphorylation mimics nutrient deprivation through stimulating the kinase activity of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex and facilitates phagophore and autophagosome formation. By monitoring the ATG14 phosphorylation, we determined that the ULK1 activity requires BECN1/Beclin 1 but not the phosphatidylethanolamine (PE)-conjugation machinery and the PIK3C3 kinase activity. Monitoring the phosphorylation also allowed us to identify that ATG9A is required to suppress the ULK1 activity under nutrient-enriched conditions. Furthermore, we determined that ATG14 phosphorylation depends on ULK1 and dietary conditions in vivo. These results define a key molecular event for the starvation-induced activation of the ATG14-containing PtdIns3K complex by ULK1, and demonstrate hierarchical relations between the ULK1 activation and other autophagy proteins involved in phagophore formation.  相似文献   
50.
Physicochemical characteristics of corn stover pretreated by soaking in aqueous ammonia (SAA) and low-moisture anhydrous ammonia (LMAA) were compared and investigated. The glucan digestibility of the treated biomass reached 90 % (SAA) and 84 % (LMAA). The LMAA pretreatment enhanced the digestibility by cleaving cross-linkages between cell wall components, whereas the SAA pretreatment additionally improved the digestibility by efficiently removing a major portion of the lignin under mild reaction conditions without significant loss of carbohydrates. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) revealed the structural and chemical transformations of lignin during the pretreatments. Both pretreatments effectively cleaved ferulate cell wall cross-linking that is associated with the recalcitrance of grass lignocellulosics toward enzymatic saccharification. Extracted lignin from SAA pretreatment was extensively depolymerized but retained “native” character, as evidenced by the retention of β-ether linkages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号