首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3303篇
  免费   309篇
  国内免费   9篇
  2023年   13篇
  2022年   45篇
  2021年   67篇
  2020年   50篇
  2019年   61篇
  2018年   68篇
  2017年   52篇
  2016年   84篇
  2015年   173篇
  2014年   203篇
  2013年   248篇
  2012年   287篇
  2011年   274篇
  2010年   153篇
  2009年   161篇
  2008年   177篇
  2007年   177篇
  2006年   166篇
  2005年   138篇
  2004年   144篇
  2003年   94篇
  2002年   107篇
  2001年   81篇
  2000年   71篇
  1999年   71篇
  1998年   36篇
  1997年   16篇
  1996年   20篇
  1995年   11篇
  1994年   8篇
  1993年   7篇
  1992年   39篇
  1991年   28篇
  1990年   23篇
  1989年   26篇
  1988年   33篇
  1987年   19篇
  1986年   25篇
  1985年   21篇
  1984年   15篇
  1983年   15篇
  1982年   14篇
  1981年   7篇
  1980年   11篇
  1979年   10篇
  1978年   7篇
  1977年   6篇
  1975年   8篇
  1974年   12篇
  1973年   7篇
排序方式: 共有3621条查询结果,搜索用时 234 毫秒
51.
Glycoproteins C (gC) from herpes simplex virus type 1 (HSV-1) and HSV-2, gC-1 and gC-2, bind the human complement fragment C3b, although the two glycoproteins differ in their abilities to act as C3b receptors on infected cells and in their effects on the alternative complement pathway. Previously, we identified three regions of gC-2 (I, II, and III) which are important for C3b binding. In this study, our goal was to identify C3b-binding sites on gC-1 and to continue our analysis of gC-2. We constructed a large panel of mutants by using the cloned gC-1 and gC-2 genes. Most of the mutant proteins were transported to the surface of transiently transfected L cells and reacted with one or more monoclonal antibodies to discontinuous epitopes. By using 31 linker insertion mutants spread across the coding region of gC-1, we identified four regions in the ectodomain of gC-1 which are important for C3b binding, three of which are similar in position to C3b-binding regions I, II, and III of gC-2. Region III shares some similarities with the short consensus repeat found in CR1, the human complement receptor. These were, in part, the targets for construction of 20 single amino acid changes in region III of gC-1 and gC-2. These mutants identified similarities and differences in the C3b-binding properties of gC-1 and gC-2 and suggest that the amino half of region III is more important for C3b binding. However, our results do not support the concept of a structural relationship between the short consensus repeat of CR1 and gC, since mutations of some of the conserved residues, including three of four cysteines in region III, had no effect on C3b binding. Finally, we constructed four deletion mutants of gC-1, including one which lacked residues 33 to 123, as well as residues 367 to 449. This severely truncated molecule, lacking four cysteines and five potential N-linked glycosylation sites, was transported to the cell surface and retained its ability to bind monoclonal antibodies as well as C3b. Thus, the four distinct C3b-binding regions of gC-1 and several epitopes within two different antigenic sites are localized within residues 124 to 366.  相似文献   
52.
A genetic component in the etiology of Alzheimer disease (AD) has been supported by indirect evidence for several years, with autosomal dominant inheritance with age-dependent penetrance being suggested to explain the familial aggregation of affecteds. St. George Hyslop et al. reported linkage of familial AD (FAD) in four early-onset families (mean age at onset [M] less than 50 years). Subsequent studies have been inconsistent in their results; Goate et al. also reported positive lod scores. However, both Pericak-Vance et al.'s study of a series of mainly late-onset FAD families (M greater than 60 years) and Schellenberg et al.'s study failed to confirm linkage to chromosome 21 (CH21). These various studies suggest the possibility of genetic heterogeneity, with some families linked to CH21 and others unlocalized. Recently, St. George Hyslop et al. extended their analysis to include additional families. The extended analyses supported their earlier finding of linkage to CH21, while showing strong evidence of heterogeneity between early-onset (M less than 65 years) and late-onset (M greater than 60 years) FAD families. Because our families did not show linkage to CH21, we undertook a genomic search for an additional locus for FAD. Because of both the confounding factor of late age at onset of FAD and the lack of clear evidence of Mendelian transmission in some of our families, we employed the affected-pedigree-member (APM) method of linkage analysis as an initial screen for possible linkage. Using this method, we identified two regions suggesting linkage: the proximal long arm of chromosome 19 (CH19) and the CH21 region of FAD linkage reported by St. George Hyslop et al. Application of standard likelihood (LOD score) analysis to these data support the possibility of an FAD gene locate on CH19, particularly in the late-onset FAD families. These data further suggest genetic heterogeneity and delineate this region of CH19 as an area needing additional investigation in FAD.  相似文献   
53.
The rheological properties of blood were studied in patients supported by both the Jarvik-7 total artificial heart (TAH) and Novacor left ventricular assist device (LVAD) as a bridge to cardiac transplantation. Both groups of patients had abnormalities in blood rheology which differed according to the type of device implanted as well as on the clinical state of the patient. The rheology of individual patients correlated well with their clinical status and outcome, with incidences of TIA's and/or stroke being accompanied by marked increases in relative blood viscosity, erythrocyte rigidity, fibrinogen concentration and platelet aggregation in varying combination. Observed abnormalities in blood rheology were also crucial to thrombus formation on artificial heart valves as well. Our results show that the therapeutic management of rheological parameters should prove to be a unique and clinically rewarding approach to these patients.  相似文献   
54.
In order to utilize sulfate as the terminal electron acceptor, sulfate-reducing bacteria are equipped with a complex enzymatic system in which adenylylsulfate (AdoPSO4) reductase plays one of the major roles, reducing AdoPSO4 (the activated form of sulfate) to sulfite, with release of AMP. The enzyme has been purified to homogeneity from the anaerobic sulfate reducer Desulfovibrio gigas. The protein is composed of two non-identical subunits (70 kDa and 23 kDa) and is isolated in a multimeric form (approximately 400 kDa). It is an iron-sulfur, flavin-containing protein, with one FAD moiety, eight iron atoms and a minimum molecular mass of 93 kDa. Low-temperature EPR studies were performed to characterize its redox centers. In the native state, the enzyme showed an almost isotropic signal centered at g = 2.02 and only detectable below 20 K. This signal represented a minor species (0.10-0.25 spins/mol) and showed line broadening in the enzyme isolated from 57Fe-grown cells. Addition of sulfite had a minor effect on the EPR spectrum, but caused a major decrease in the visible region of the optical spectrum (around 392 nm). Further addition of AMP induced only a minor change in the visible spectrum whereas major changes were seen in the EPR spectrum; the appearance of a rhombic signal at g values 2.096, 1.940 and 1.890 (reduced Fe-S center I) observable below 30 K and a concomitant decrease in intensity of the g = 2.02 signal were detected. Effects of chemical reductants (ascorbate, H2/hydrogenase-reduced methyl viologen and dithionite) were also studied. A short time reduction with dithionite (15 s) or reduction with methyl viologen gave rise to the full reduction of center I (with slightly modified g values at 2.079, 1.939 and 1.897), and the complete disappearance of the g = 2.02 signal. Further reduction with dithionite produces a very complex EPR spectrum of a spin-spin-coupled nature (observable below 20 K), indicating the presence of at least two iron-sulfur centers, (centers I and II). M?ssbauer studies on 57Fe-enriched D. gigas AdoPSO4 reductase demonstrated unambiguously the presence of two 4Fe clusters. Center II has a redox potential less than or equal to 400 mV and exhibits spectroscopic properties that are characteristic of a ferredoxin-type [4Fe-4S] cluster. Center I exhibits spectra with atypical M?ssbauer parameters in its reduced state and has a midpoint potential around 0 mV, which is distinct from that of a ferredoxin-type [4Fe-4S] cluster, suggesting a different structure and/or a distinct cluster-ligand environment.  相似文献   
55.
M?ssbauer and EPR spectroscopy were used to characterize the heme prosthetic groups of the nitrite reductase isolated from Desulfovibrio desulfuricans (ATCC 27774), which is a membrane-bound multiheme cytochrome capable of catalyzing the 6-electron reduction of nitrite to ammonia. At pH 7.6, the as-isolated enzyme exhibited a complex EPR spectrum consisting of a low-spin ferric heme signal at g = 2.96, 2.28, and 1.50 plus several broad resonances indicative of spin-spin interactions among the heme groups. EPR redox titration studies revealed yet another low-spin ferric heme signal at g = 3.2 and 2.14 (the third g value was undetected) and the presence of a high-spin ferric heme. M?ssbauer measurements demonstrated further that this enzyme contained six distinct heme groups: one high-spin (S = 5/2) and five low-spin (S = 1/2) ferric hemes. Characteristic hyperfine parameters for all six hemes were obtained through a detailed analysis of the M?ssbauer spectra. D. desulfuricans nitrite reductase can be reduced by chemical reductants, such as dithionite or reduced methyl viologen, or by hydrogenase under hydrogen atmosphere. Addition of nitrite to the fully reduced enzyme reoxidized all five low-spin hemes to their ferric states. The high-spin heme, however, was found to complex NO, suggesting that the high-spin heme could be the substrate binding site and that NO could be an intermediate present in an enzyme-bound form.  相似文献   
56.
57.
ZAK (sterile alpha motif and leucine zipper containing kinase AZK), a serine/threonine kinase with multiple biochemical functions, has been associated with various cell processes, including cell proliferation, cell differentiation, and cardiac hypertrophy. In our previous reports, we found that the activation of ZAKα signaling was critical for cardiac hypertrophy. In this study, we show that the expression of ZAKα activated apoptosis through both a FAS‐dependent pathway and a mitochondria‐dependent pathway by subsequently inducing caspase‐3. ZAKβ, an isoform of ZAKα, is dramatically expressed during cardiac hypertrophy and apoptosis. The interaction between ZAKα and ZAKβ was demonstrated here using immunoprecipitation. The results show that ZAKβ has the ability to diminish the expression level of ZAKα. These findings reveal an inherent regulatory role of ZAKβ to antagonize ZAKα and to subsequently downregulate the cardiac hypertrophy and apoptosis induced by ZAKα.  相似文献   
58.
59.
Sleep and Biological Rhythms - Neurovascular coupling (NVC), the transient regional hyperemia following the evoked neuronal responses, is the basis of blood oxygenation level-dependent techniques...  相似文献   
60.
A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号