首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   401篇
  免费   43篇
  444篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   6篇
  2016年   10篇
  2015年   16篇
  2014年   25篇
  2013年   18篇
  2012年   32篇
  2011年   25篇
  2010年   21篇
  2009年   21篇
  2008年   25篇
  2007年   30篇
  2006年   19篇
  2005年   18篇
  2004年   24篇
  2003年   19篇
  2002年   12篇
  2001年   8篇
  2000年   2篇
  1999年   14篇
  1998年   13篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   8篇
  1993年   9篇
  1992年   2篇
  1991年   4篇
  1990年   9篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有444条查询结果,搜索用时 15 毫秒
61.
Mycelium of Agaricus bisporus strain Horst U1 was grown in batch cultures on different concentrations of ammonium, glutamate, and glucose to test the effect of these substrates on the activities of NADP-dependent glutamate dehydrogenase (NADP-GDH, EC 1.4.1.4), NAD-dependent glutamate dehydrogenase (NAD-GDH, EC 1.4.1.2.), and glutamine synthetase (GS, EC 6.3.1.2.). When grown on ammonium, the activities of NADP-GDH and GS were repressed. NAD-GDH activity was about 10 times higher than the activities of NADP-GDH and GS. At concentrations below 8 mM ammonium, NADP-GDH and GS were slightly derepressed. When glutamate was used as the nitrogen source, activities of NADP-GDH and GS were derepressed; compared with growth on ammonium, the activities of these two enzymes were about 10 times higher. Activities of GDHs showed no variation at different glutamate concentrations. Activity of GS was slightly derepressed at low glutamate concentrations. Growth of A. bisporus on both ammonium and glutamate as nitrogen sources resulted in enzyme activities comparable to growth on ammonium alone. Activities of NADP-GDH, NAD-GDH, and GS were not influenced by the concentration of glucose in the medium. In mycelium starved for nitrogen, the activities of NADP-GDH, NAD-GDH, and GS were derepressed, while in carbon-starved mycelium the activity of GS and both GDHs was repressed.  相似文献   
62.
The immunogenicity of biopharmaceuticals used in clinical practice remains an unsolved challenge in drug development. Non-human primates (NHPs) are often the only relevant animal model for the development of monoclonal antibodies (mAbs), but the immune response of NHPs to therapeutic mAbs is not considered to be predictive of the response in humans because of species differences. In this study, we accessed the drug registration files of all mAbs registered in the European Union to establish the relative immunogenicity of mAbs in NHPs and humans. The incidence of formation of antidrug-antibodies in NHPs and patients was comparable in only 59% of the cases. In addition, the type of antidrug-antibody response was different in NHP and humans in 59% of the cases. Humanization did not necessarily reduce immunogenicity in humans. Immunogenicity interfered with the safety assessment during non-clinical drug development when clearing or neutralizing antibodies were formed. While important to interpret the study results, immunogenicity reduced the quality of NHP data in safety assessment. These findings confirm that the ability to compare relative immunogenicity of mAbs in NHPs and humans is low. Furthermore, immunogenicity limits the value of informative NHP studies.  相似文献   
63.
Benzene, toluene, ethylbenzene, and xylene are collectively known as BTEX which contributes to volatile environmental contaminants. This present study investigates the microbial degradation of BTEX in batch and continuous soil column experiments and its effects on soil matric potential. Batch degradation experiments were performed with different initial concentrations of BTEX using the BTEX tolerant culture isolated from petroleum-contaminated soil. In batch study, the degradation pattern for single substrate showed that xylene was degraded much faster than other compounds followed by ethylbenzene, toluene, and benzene with the highest μmax = 0.140 h?1 during initial substrate concentration of 100 mg L?1. Continuous degradation experiments were performed in a soil column with an inlet concentration of BTEX of about 2000 mg L?1 under unsaturated flow in anaerobic condition. BTEX degradation pattern was studied with time and the matric potential of the soil at different parts along the length of the column were determined at the end of the experiment. In continuous degradation study, BTEX compounds were degraded with different degradation pattern and an increase in soil matric potential was observed with an increase in depth from top to bottom in the column with applied suction head. It was found that column biodegradation contributed to 69.5% of BTEX reduction and the bacterial growth increased the soil matric potential of about 34% on an average along the column height. Therefore, this study proves that it is significant to consider soil matric potential in modeling fate and transport of BTEX in unsaturated soils.  相似文献   
64.
Cannabinoids, flavonoids, and stilbenoids have been identified in the annual dioecious plant Cannabis sativa L. Of these, the cannabinoids are the best known group of this plant's natural products. Polyketide synthases (PKSs) are responsible for the biosynthesis of diverse secondary metabolites, including flavonoids and stilbenoids. Biosynthetically, the cannabinoids are polyketide substituted with terpenoid moiety. Using an RT-PCR homology search, PKS cDNAs were isolated from cannabis plants. The deduced amino acid sequences showed 51%-73% identity to other CHS/STS type sequences of the PKS family. Further, phylogenetic analysis revealed that these PKS cDNAs grouped with other non-chalcone-producing PKSs. Homology modeling analysis of these cannabis PKSs predicts a 3D overall fold, similar to alfalfa CHS2, with small steric differences on the residues that shape the active site of the cannabis PKSs.  相似文献   
65.

Background

Due partly to physicians’ unawareness, many adults with Pompe disease are diagnosed with great delay. Besides, it is not well known which factors influence the rate of disease progression, and thus disease outcome. We delineated the specific clinical features of Pompe disease in adults, and mapped out the distribution and severity of muscle weakness, and the sequence of involvement of the individual muscle groups. Furthermore, we defined the natural disease course and identified prognostic factors for disease progression.

Methods

We conducted a single-center, prospective, observational study. Muscle strength (manual muscle testing, and hand-held dynamometry), muscle function (quick motor function test), and pulmonary function (forced vital capacity in sitting and supine positions) were assessed every 3–6 months and analyzed using repeated-measures ANOVA.

Results

Between October 2004 and August 2009, 94 patients aged between 25 and 75 years were included in the study. Although skeletal muscle weakness was typically distributed in a limb-girdle pattern, many patients had unfamiliar features such as ptosis (23%), bulbar weakness (28%), and scapular winging (33%). During follow-up (average 1.6 years, range 0.5-4.2 years), skeletal muscle strength deteriorated significantly (mean declines of ?1.3% point/year for manual muscle testing and of ?2.6% points/year for hand-held dynamometry; both p<0.001). Longer disease duration (>15 years) and pulmonary involvement (forced vital capacity in sitting position <80%) at study entry predicted faster decline. On average, forced vital capacity in supine position deteriorated by 1.3% points per year (p=0.02). Decline in pulmonary function was consistent across subgroups. Ten percent of patients declined unexpectedly fast.

Conclusions

Recognizing patterns of common and less familiar characteristics in adults with Pompe disease facilitates timely diagnosis. Longer disease duration and reduced pulmonary function stand out as predictors of rapid disease progression, and aid in deciding whether to initiate enzyme replacement therapy, or when.
  相似文献   
66.
67.
Membrane fusion requires drastic and transient changes of bilayer curvature and here we have studied the interaction of three de novo designed synthetic hydrophobic peptides with a biomimetic three-lipid mixture by solid state NMR. An experimental approach is presented for screening of peptide-lipid interactions and their aggregation, and their embedding in a biomimetic membrane system using established proton-decoupled 13C,15N and proton spin diffusion heteronuclear 1H-13C correlation NMR methods at high magnetic field. Experiments are presented for a set of de-novo designed fusion peptides in interaction with their lipid environment. The data provide additional support for the transmembrane model for the least fusogenic peptide, L16, while the peripheral intercalation model is preferred for the fusogenic peptides LV16 and LV16G8P9. This contributes to converging evidence that peripheral intercalation is both necessary and sufficient to trigger the fusion process for a lipid mixture close to a critical point for phase separation across the bilayer.  相似文献   
68.
Recent experiments to characterize the short-range stiffness (SRS)–force relationship in several cat hindlimb muscles suggested that the there are differences in the tendon elastic moduli across muscles [Cui, L., Perreault, E.J., Maas, H., Sandercock, T.G., 2008. Modeling short-range stiffness of feline lower hindlimb muscles. J. Biomech. 41 (9), 1945–1952.]. Those conclusions were inferred from whole muscle experiments and a computational model of SRS. The present study sought to directly measure tendon elasticity, the material property most relevant to SRS, during physiological loading to confirm the previous modeling results. Measurements were made from the medial gastrocnemius (MG), tibialis anterior (TA) and extensor digitorum longus (EDL) muscles during loading. For the latter, the model indicated a substantially different elastic modulus than for MG and TA. For each muscle, the stress–strain relationship of the external tendon was measured in situ during the loading phase of isometric contractions conducted at optimum length. Young's moduli were assessed at equal strain levels (1%, 2% and 3%), as well as at peak strain. The stress–strain relationship was significantly different between EDL and MG/TA, but not between MG and TA. EDL had a more apparent toe region (i.e., lower Young's modulus at 1% strain), followed by a more rapid increase in the slope of the stress–strain curve (i.e., higher Young's modulus at 2% and 3% strain). Young's modulus at peak strain also was significantly higher in EDL compared to MG/TA, whereas no significant difference was found between MG and TA. These results indicate that during natural loading, tendon Young's moduli can vary considerably across muscles. This creates challenges to estimating muscle behavior in biomechanical models for which direct measures of tendon properties are not available.  相似文献   
69.
Urbanised environments have been identified as hotspots of anthropogenic methane emissions. Especially urban aquatic ecosystems are increasingly recognised as important sources of methane. However, the microbiology behind these emissions remains unexplored. Here, we applied microcosm incubations and molecular analyses to investigate the methane-cycling community of the Amsterdam canal system in the Netherlands. The sediment methanogenic communities were dominated by Methanoregulaceae and Methanosaetaceae, with co-occurring methanotrophic Methanoperedenaceae and Methylomirabilaceae indicating the potential for anaerobic methane oxidation. Methane was readily produced after substrate amendment, suggesting an active but substrate-limited methanogenic community. Bacterial 16S rRNA gene amplicon sequencing of the sediment revealed a high relative abundance of Thermodesulfovibrionia. Canal wall biofilms showed the highest initial methanotrophic potential under oxic conditions compared to the sediment. During prolonged incubations the maximum methanotrophic rate increased to 8.08 mmol gDW−1 d−1 that was concomitant with an enrichment of Methylomonadaceae bacteria. Metagenomic analysis of the canal wall biofilm lead to the recovery of a single methanotroph metagenome-assembled genome. Taxonomic analysis showed that this methanotroph belongs to the genus Methyloglobulus. Our results underline the importance of previously unidentified and specialised environmental niches at the nexus of the natural and human-impacted carbon cycle.  相似文献   
70.
Laboratory and field studies have indicated that anaerobic ammonium oxidation (anammox) is an important process in the marine nitrogen cycle. In this study 11 additional anoxic marine sediment and water column samples were studied to substantiate this claim. In a combined approach using the molecular methods, polymerase chain reaction (PCR), qualitative and quantitative fluorescence in situ hybridization (FISH), as well as (15)N stable isotope activity measurements, it was shown that anammox bacteria were present and active in all samples investigated. The anammox activity measured in the sediment samples ranged from 0.08 fmol cell(-1) day(-1) N(2) in the Golfo Dulce (Pacific Ocean, Costa Rica) sediment to 0.98 fmol cell(-1) day(-1) N(2) in the Gullmarsfjorden (North Sea, Sweden) sediment. The percentage of anammox cell of the total population (stained with DAPI) as assessed by quantitative FISH was highest in the Barents Sea (9% +/- 4%) and in most of the samples well over 2%. Fluorescence in situ hybridization and phylogenetic analysis of the PCR products derived from the marine samples indicated the exclusive presence of members of the Candidatus'Scalindua' genus. This study showed the ubiquitous presence of anammox bacteria in anoxic marine ecosystems, supporting previous observations on the importance of anammox for N cycling in marine environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号