首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   399篇
  免费   43篇
  2024年   1篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   6篇
  2016年   10篇
  2015年   16篇
  2014年   25篇
  2013年   18篇
  2012年   32篇
  2011年   25篇
  2010年   21篇
  2009年   21篇
  2008年   25篇
  2007年   30篇
  2006年   19篇
  2005年   18篇
  2004年   24篇
  2003年   19篇
  2002年   12篇
  2001年   8篇
  2000年   2篇
  1999年   14篇
  1998年   13篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   8篇
  1993年   9篇
  1992年   2篇
  1991年   4篇
  1990年   9篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有442条查询结果,搜索用时 15 毫秒
361.
Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite and produce N(2). They reside in many natural ecosystems and contribute significantly to the cycling of marine nitrogen. Anammox bacteria generally live under ammonium limitation, and it was assumed that in nature anammox bacteria depend on other biochemical processes for ammonium. In this study we investigated the possibility of dissimilatory nitrate reduction to ammonium by anammox bacteria. Physically purified Kuenenia stuttgartiensis cells reduced (15)NO(3) (-) to (15)NH(4) (+) via (15)NO(2) (-) as the intermediate. This was followed by the anaerobic oxidation of the produced ammonium and nitrite. The overall end-product of this metabolism of anammox bacteria was (15)N(15)N dinitrogen gas. The nitrate reduction to nitrite proceeds at a rate of 0.3 +/- 0.02 fmol cell(-1) day(-1) (10% of the 'normal' anammox rate). A calcium-dependent cytochrome c protein with a high (305 mumol min(-1) mg protein(-1)) rate of nitrite reduction to ammonium was partially purified. We present evidence that dissimilatory nitrate reduction to ammonium occurs in Benguela upwelling system at the same site where anammox bacteria were previously detected. This indicates that anammox bacteria could be mediating dissimilatory nitrate reduction to ammonium in natural ecosystems.  相似文献   
362.
Invertebrates rely completely for their protection against pathogens on the innate immune system. This non-self-recognition is activated by microbial cell wall components with unique conserved molecular patterns. Pathogen-associated molecular patterns (PAMPs) are recognised by pattern recognition receptors (PRRs). Toll and its mammalian homologs Toll-like receptors are cell-surface receptors acting as PRRs and involved in the signalling pathway implicated in their immune response. Here we describe a novel partial Toll receptor gene cloned from a gill library of the giant tiger shrimp, Penaeus monodon, using primers based on the highly conserved Toll/IL-1R (TIR) domain. The deduced amino acid sequence of the P. monodon Toll (PmToll) shows 59% similarity to a Toll-related protein of Apis mellifera. Analysis of the LRRs of shrimp Toll contained no obvious PAMP-binding insertions. Phylogenetic analysis with the insect Toll family shows clustering with Toll1 and Toll5 gene products, and it is less related to Toll3 and Toll4. Furthermore, RT-qPCR shows that PmToll is constitutively expressed in gut, gill and hepatopancreas. Challenge with white spot syndrome virus (WSSV) shows equal levels of expression in these organs. A role in the defence mechanism is discussed. In conclusion, shrimp possess at least one Toll receptor that might be involved in immune defence.  相似文献   
363.
364.
Binding of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel to the Na(+)/H(+) exchanger 3 regulatory factor 1 (NHERF-1) and NHERF-2 scaffolding proteins has been shown to affect its localization and activation. We have for the first time studied the physiological role of these proteins in CFTR regulation in native tissue by determining CFTR-dependent chloride current in NHERF-1- and NHERF-2-deficient mice. The cAMP- and cGMP-activated chloride current and the basal chloride current in basolaterally permeabilized jejunum were reduced by approximately 30% in NHERF-1-deficient mice but not in NHERF-2-deficient mice. The duodenal bicarbonate secretion was affected in a similar way, whereas no significant differences in CFTR activity were observed in ileum. CFTR abundance as determined by Western blotting was unaltered in jejunal epithelial cells and brush border membranes of NHERF-1 and NHERF-2 mutant mice. However, semi-quantitative detection of CFTR by confocal microscopy showed that the level of apically localized CFTR in jejunal crypts was reduced by approximately 35% in NHERF-1-deficient and NHERF-1/2 double deficient mice but not in NHERF-2 null mice. Together our results indicate that NHERF-1 is required for full activation of CFTR in murine duodenal and jejunal mucosa and that NHERF-1 affects the local distribution of CFTR in or near the plasma membrane. These studies provide the first evidence in native intestinal epithelium that NHERF-1 but not NHERF-2 is involved in the formation of CFTR-containing functional complexes that serve to position CFTR in the crypt apical membrane and/or to optimize its function as a cAMP- and cGMP-regulated anion channel.  相似文献   
365.
Equine arteritis virus (EAV) induces apoptosis in infected cells. Cell death caused by EAV has been studied mainly using three cell lines, BHK-21, RK-13 and Vero cells. The mechanism of apoptosis varies among cell lines and results cannot be correlated owing to differences in EAV strains used. We evaluated different markers for apoptosis in BHK-21, RK-13 and Vero cell lines using the Bucyrus EAV reference strain. Acridine orange/ethidium bromide staining revealed morphological changes in infected cells, while flow cytometry indicated the extent of apoptosis. We also observed DNA fragmentation, but the DNA ladder was detected at different times post-infection depending on the cell line, i.e., 48, 72 and 96 h post-infection in RK-13, Vero and BHK-21 cells, respectively. Measurement of viral titers obtained with each cell line indicated that apoptosis causes interference with viral replication and therefore decreased viral titers. As an unequivocal marker of apoptosis, we measured the expression of caspase-3 and caspases-8 and -9 as extrinsic and intrinsic markers of apoptosis pathways, respectively. Caspase-8 in BHK-21 cells was the only protease that was not detected at any of the times assayed. We found that Bucyrus EAV strain exhibited a distinctive apoptosis pathway depending on the cell line.  相似文献   
366.
367.

Background  

Quorum sensing is a term describing a bacterial communication system mediated by the production and recognition of small signaling molecules. The LuxS enzyme, catalyzing the synthesis of AI-2, is conserved in a wide diversity of bacteria. AI-2 has therefore been suggested as an interspecies quorum sensing signal. To investigate the role of endogenous AI-2 in protein expression of the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), we performed a 2D-DIGE proteomics experiment comparing total protein extract of wildtype S. Typhimurium with that of a luxS mutant, unable to produce AI-2.  相似文献   
368.
The oxidation of dimethylsulfide and methanethiol by sulfate-reducing bacteria (SRB) was investigated in Tanzanian mangrove sediments. The rate of dimethylsulfide and methanethiol accumulation in nonamended sediment slurry (control) incubations was very low while in the presence of the inhibitors tungstate and bromoethanesulfonic acid (BES), the accumulation rates ranged from 0.02–0.34 to 0.2–0.4 nmol g FW sediment−1 h−1, respectively. Degradation rates of methanethiol and dimethylsulfide added were 2–10-fold higher. These results point to a balance of production and degradation. Degradation was inhibited much stronger by tungstate than by BES, which implied that SRB were more important. In addition, a new species of SRB, designated strain SD1, was isolated. The isolate was a short rod able to utilize a narrow range of substrates including dimethylsulfide, methanethiol, pyruvate and butyrate. Strain SD1 oxidized dimethylsulfide and methanethiol to carbon dioxide and hydrogen sulfide with sulfate as the electron acceptor and exhibited a low specific growth rate of 0.010 ± 0.002 h−1, but a high affinity for its substrates. The isolated microorganism could be placed in the genus Desulfosarcina (the most closely related cultured species was Desulfosarcina variabilis , 97% identity). Strain SD1 represents a member of the dimethylsulfide/methanethiol-consuming SRB population in mangrove sediments.  相似文献   
369.
370.
Quantitative analysis of genes that code for Dehalococcoides 16S rRNA and chloroethene-reductive dehalogenases TceA, VcrA, and BvcA was done on groundwater sampled from 150 monitoring wells spread over 11 chlorinated ethene polluted European locations. Redundancy analysis was used to relate molecular data to geochemical conditions. Dehalococcoides 16S rRNA- and vinyl chloride (VC)-reductase genes were present at all tested locations in concentrations up to 106 gene copies per ml of groundwater. However, differences between and also within locations were observed. Variation in Dehalococcoides 16S rRNA gene copy numbers were most strongly correlated to dissolved organic carbon concentration in groundwater and to conditions appropriate for biodegradation of chlorinated ethenes (U.S. Environmental Protection Agency score). In contrast, vcrA gene copy numbers correlated most significantly to VC and chlorinated ethene concentrations. Interestingly, bvcA and especially tceA were more correlated with oxidizing conditions. In groundwater microcosms, dechlorination of 1 mM VC was correlated to an increase of vcrA and/or bvcA gene copies by 2 to 4 orders of magnitude. Interestingly, in 34% of the monitoring wells and in 40% of the active microcosms, the amount of individual VC-reductase gene copies exceeded that of Dehalococcoides 16S rRNA gene copies. It is concluded that the geographical distribution of the genes was not homogeneous, depending on the geochemical conditions, whereby tceA and bvcA correlated to more oxidized conditions than Dehalococcoides 16S rRNA and vcrA. Because the variation in VC-reductase gene numbers was not directly correlated to variation in Dehalococcoides spp., VC-reductase genes are better monitoring parameters for VC dechlorination capacity than Dehalococcoides spp.Chlorinated ethenes, such as tetrachloroethene (PCE) and trichloroethene (TCE), are persistent groundwater pollutants (15, 22). Because these compounds are toxic and mobile in groundwater systems, they form a serious risk for human health and the environment. PCE and TCE can be dechlorinated by microorganisms under anaerobic conditions by reductive dehalogenation to dichloroethene (DCE), vinyl chloride (VC), and ethene (20). Bioremediation strategies for chloroethene-contaminated sites are often based on (stimulation of) reductive dechlorination of the chlorinated ethenes to ethene (7, 12, 14). In practice, reductive dechlorination of PCE and TCE can be incomplete, resulting in accumulation of DCE or VC. Since VC is much more mobile, toxic, and carcinogenic than PCE and TCE (9), monitoring and stimulation of VC dechlorination are essential steps in bioremediation strategies.Only members of Dehalococcoides spp. are known to be able to reductively dechlorinate VC. Therefore, 16S rRNA genes of these species are often used as molecular target to indicate and monitor DCE and VC dechlorination capacity at contaminated sites. However, previous studies showed different dechlorination capacities for individual Dehalococcoides species, and only a few strains are known to metabolically dechlorinate VC (6, 8, 10, 17, 21). As a consequence, 16S rRNA gene-based detection can lead to overestimation of VC dechlorination capacity. In contrast, although metabolic reductive dechlorination of VC has mostly been linked to Dehalococcoides spp., it cannot be excluded that other microbial species that perform this dechlorination exist. Genes coding for DCE and VC reductases may be exchangeable between different microbial species via horizontal gene transfer. This is plausible since it has been shown that the metabolic genes for VC dechlorination, vcrA and bvcA, have a different evolutionary history than most other Dehalococcoides genes (16). Consequently, Dehalococcoides 16S rRNA gene-based detection can also lead to underestimation of VC dechlorination capacity.To more precisely determine VC dechlorination capacity, genes directly involved in reductive dechlorination of VC should be used as a molecular target, in addition to Dehalococcoides 16S rRNA genes. A quantitative method was described to detect genes coding for VC-reductases VcrA and BvcA identified in Dehalococcoides sp. strains VS and GT and in Dehalococcoides sp. strain BAV1, respectively (10, 17, 21). Different studies showed direct correlation of vcrA and bvcA gene copy numbers with reductive dechlorination of VC in batch cultures, soil columns, and contaminated sites (2, 11, 19).Quantification of genes that encode VC-reductases can be a useful method to monitor reductive dechlorination of VC in chloroethene-contaminated groundwater during enhanced natural attenuation activities (4, 19). However, little is known about the presence, dispersion, and importance of specific dehalogenase genes in chlorinated ethene polluted groundwater and their correlation to biogeochemical conditions and reductive dechlorination.The objective of the present study was therefore to identify the relative importance of TCE-reductase gene tceA and VC-reductase genes vcrA and bvcA in chloroethene-polluted groundwater and to identify geochemical parameters that contribute to variation in copy numbers of these genes. To this end, groundwater of 150 monitoring wells from 11 European polluted sites was analyzed. Furthermore, microcosms with groundwater from 6 locations were started to test whether VC dechlorination is directly correlated to an increase of vcrA or bvcA genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号