首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1686篇
  免费   87篇
  国内免费   3篇
  2023年   12篇
  2022年   40篇
  2021年   50篇
  2020年   48篇
  2019年   82篇
  2018年   68篇
  2017年   37篇
  2016年   60篇
  2015年   56篇
  2014年   83篇
  2013年   114篇
  2012年   133篇
  2011年   114篇
  2010年   62篇
  2009年   55篇
  2008年   90篇
  2007年   65篇
  2006年   60篇
  2005年   38篇
  2004年   45篇
  2003年   60篇
  2002年   23篇
  2001年   40篇
  2000年   25篇
  1999年   14篇
  1998年   11篇
  1997年   8篇
  1995年   6篇
  1994年   7篇
  1992年   15篇
  1991年   12篇
  1990年   11篇
  1989年   15篇
  1988年   21篇
  1987年   12篇
  1986年   13篇
  1985年   13篇
  1984年   10篇
  1983年   11篇
  1982年   8篇
  1981年   6篇
  1980年   10篇
  1979年   9篇
  1978年   10篇
  1977年   6篇
  1976年   12篇
  1975年   8篇
  1974年   7篇
  1973年   6篇
  1964年   6篇
排序方式: 共有1776条查询结果,搜索用时 31 毫秒
191.
Inactivation of the X chromosome occurs in female somatic cells and in male meiosis. In both cases, the inactive X chromosome undergoes changes in histone modifications including deacetylation of core histone proteins and enrichment with histone H3 lysine 9 (H3-K9) dimethylation. In this study we show that while the inactive X in female somatic cells is largely devoid of H3-K4 dimethylation, the inactive X in male meiosis is enriched with this modification. However, the inactive X chromosome in female somatic cells and the inactive X and Y in male meiosis are devoid of H3-K4 trimethylation. Further, trimethylation of H3-K4 is present at discrete regions along most of the autosomes, while H3-K4 dimethylation shows a more homogenous staining. Also, the Y chromosome is largely devoid of H3-K4 di- and trimethylation in somatic cells of both humans and mice, however, the Y chromosome is enriched with H3-K4 di- but not trimethylation throughout spermatogenesis. Our results provide insights into the differences between female somatic cells and male germ cells in inactivating the X chromosome, and suggest that trimethylation, and not dimethylation, of H3-K4 is a more robust indicator of the active regions of the genome.  相似文献   
192.
Agonist-induced activation of the RhoA/Rho kinase (ROCK) pathway results in inhibition of myosin phosphatase and maintenance of myosin light chain (MLC20) phosphorylation. We have shown that RhoA/ROCKII translocates and associates with heat shock protein (HSP)27 in the particulate fraction. We hypothesize that inhibition of the 130-kDa regulatory myosin-binding subunit (MYPT) requires its association with HSP27 in the particulate fraction. Furthermore, it is not certain whether regulation of MYPT by CPI-17 or by ROCKII is due to cross talk between RhoA and PKC-alpha. Presently, we examined the cross talk between RhoA and PKC-alpha in the regulation of MYPT phosphorylation in rabbit colon smooth muscle cells. Acetylcholine induced 1) sustained phosphorylation of PKC-alpha, CPI-17, and MYPT; 2) an increase in the association of phospho-MYPT with HSP27 in the particulate fraction; 3) a decrease in myosin phosphatase activity (66.21+/-3.52 and 42.19+/-3.85% nM/ml lysate at 30 s and 4 min); and 4) an increase in PKC activity (298.12+/-46.60% and 290.59+/-22.07% at 30 s and 4 min). Inhibition of RhoA/ROCKII by Y-27632 inhibited phosphorylation of MYPT and its association with HSP27. Both Y27632 and a negative dominant construct of RhoA inhibited phosphorylation of MYPT and CPI-17. Inhibition of PKCs or calphostin C or selective inhibition of PKC-alpha by negative dominant constructs inhibited phosphorylation of MYPT and CPI-17. The results suggest that 1) acetylcholine induces activation of both RhoA and/or PKC-alpha pathways, suggesting cross talk between RhoA and PKC-alpha resulting in phosphorylation of MYPT, inhibition of myosin phosphatase activity, and maintenance of MLC phosphorylation; and 2) phosphorylated MYPT is associated with HSP27 and translocated to the particulate fraction, suggesting a scaffolding role for HSP27 in mediating the association of the complex MYPT/RhoA-ROCKII. Thus both pathways (PKC and RhoA) converge on the regulation of myosin phosphatase activities and modulate sustained phosphorylation of MLC20.  相似文献   
193.
Cyclopentadienyltricarbonyl tungsten selenocarboxylate complexes CpW(CO)3SeCOR (1) (R = C6H5 (a), 3,5-C6H3(NO2)2 (b), 3-C6H4NO2 (c), 4-C6H4NO2 (d), CH3 (e)) and cyclopentadienyltricarbonyl tungsten selenosulfonate complexes CpW(CO)3SeSO2R (2) (R = C6H5 (a), 4-C6H4CH3 (b), 4-C6H4OCH3 (c), 4-C6H4Cl (d), CH3 (e)) have been prepared from the tungsten anion [CpW(CO)3Se] and acid- or sulfonyl chlorides respectively. The new complexes (1 and 2) have been characterized by IR, 1H NMR spectroscopies as well as elemental analysis. The crystal structure of CpW(CO)3SeCO-3-C6H4NO2 (1c) was determined.  相似文献   
194.
Pulsatile flow in an axisymmetric rigid-walled model of an abdominal aorta aneurysm was analyzed numerically for various aneurysm dilations using physiologically realistic resting waveform at time-averaged Reynolds number of 300 and peak Reynolds number of 1607. Discretization of the governing equations was achieved using a finite element scheme based on the Galerkin method of weighted residuals. Comparisons with previously published work on the basis of special cases were performed and found to be in excellent agreement. Our findings indicate that the velocity fields are significantly affected by non-Newtonian properties in pathologically altered configurations. Non-Newtonian fluid shear stress is found to be greater than Newtonian fluid shear stress during peak systole. Further, the maximum shear stress is found to occur near the distal end of AAA during peak systole. The impact of non-Newtonian blood flow characteristics on pressure compared to Newtonian model is found insignificant under resting conditions. Viscous and inertial forces associated with blood flow are responsible for the changes in the wall that result in thrombus deposition and dilation while rupture of AAA is more likely determined by much larger mechanical stresses imposed by pulsatile pressure on the wall of AAA.  相似文献   
195.
Individual ionic channels were shown to be formed in the brain cholesterol containing phospholipid membranes by two-sided addition of the amphotericin B alkyl derivatives. At concentrations between 10(-8) and 10(-7) M, the resulting conductance appeared to be transient. Existence of different antibiotic assemblies was justified by the kinetic analysis of the membrane conductance decline following the antibiotic washing out. In order to account for the transient characteristics of the induced conductance, it was proposed that the antibiotic oligomers incorporate into the membrane from the aqueous phase, form channels aggregating with cholesterol, and then dissociate in the bilayer into non-active degraded oligomeric or monomeric forms.  相似文献   
196.
The synthesis of transition metal barbiturate, and thiobarbiturate complexes containing different functional groups of variable electronic character with CoII, NiII, CuII, PdII, and PtII have been prepared. The stereochemistry and the mode of bonding of the complexes were determined by elemental analysis and electronic and vibrational spectra together with their magnetic moment values. Electronic spin resonance of copper complexes were recorded. The Racah parameter of some cobalt and nickel complexes were calculated. Some of the complexes are of mixed stereochemistry. All the PdII or PtII complexes are of square planar geometries.  相似文献   
197.
doi: 10.1111/j.1741‐2358.2010.00431.x A clinico‐demographic analysis of maxillofacial trauma in the elderly Introduction: The elderly represent an increasing proportion of society. Management of maxillofacial trauma in this population may be complicated by coexisting medical conditions, requiring multi‐disciplinary care. Methods: This retrospective audit assesses the incidence and pattern of maxillofacial trauma in elderly patients (≥60 years) presented to the Merseyside Regional Maxillofacial Unit. Over the time period of 2003, 2004 and 2005, 7905 trauma patients presented to the accident and emergency department, of whom 757 were elderly (10%). Results: Results indicated that the male to female ratio was 1:1.4. The commonest cause of injury was a fall (83%) followed by an assault (6%); the majority of falls occurring in the home. Conclusion: Management of maxillofacial injuries in this population should focus on targeted prevention programmes, which address known risk factors for falling. We believe that this is a public health issue. Members of the maxillofacial team should be aware of common risk factors of falls in elderly. Better collaboration with the Medicine for Elderly team should be considered at an early stage on managing these patients.  相似文献   
198.
Paraoxonase-1 (PON1) is a high-density lipoprotein (HDL)-associated serum enzyme thought to make a major contribution to the antioxidant and anti-inflammatory capacities of HDLs. However, the role of PON1 in the modulation of cholesterol efflux is poorly understood. The aim of our study was to investigate the involvement of PON1 in the regulation of cholesterol efflux, especially the mechanism by which it modulates HDL-mediated cholesterol transport. The enrichment of HDL(3) with human PON1 enhanced, in a dose-dependent manner, cholesterol efflux from THP-1 macrophage-like cells and ABCA1-enriched J774 macrophages. Moreover, an additive effect was observed when ABCA1-enriched J774 macrophages were incubated with both PON1 and apo-AI. Interestingly, PON1 alone was able to mediate cholesterol efflux from J774 macrophages and to upregulate ABCA1 expression on J774 macrophages. Immunofluorescence measurement showed an increase in PON1 levels in the cytoplasm of J774 macrophages overexpressing ABCA1. PON1 used an apo-AI-like mechanism to modulate cholesterol efflux from rapid and slow efflux pools derived from the lipid raft and nonraft domains of the plasma membrane, respectively. This was supported by the fact that ABCA1 protein was incrementally expressed by J774 macrophages within the first few hours of incubation with cholesterol-loaded J774 macrophages and that cyclodextrin significantly inhibited the capacity of PON1 to modulate cholesterol efflux from macrophages. This finding suggested that PON1 plays an important role in the antiatherogenic properties of HDLs and may exert its protective function outside the lipoprotein environment.  相似文献   
199.
In the United States alone, the National Heart, Lung, and Blood Institute (NHLBI) has invested several hundred million dollars in pursuit of myocardial infarct-sparing therapies. However, due largely to methodological limitations, this investment has not produced any notable clinical application or cardioprotective therapy. Among the major methodological limitations is the reliance on animal models that do not mimic the clinical situation. In this context, the limited use of conscious animal models is of major concern. In fact, whenever possible, studies of cardiovascular physiology and pathophysiology should be conducted in conscious, complex models to avoid the complications associated with the use of anesthesia and surgical trauma. The mouse has significant advantages over other experimental models for the investigation of infarct-sparing therapies. The mouse is inexpensive, has a high throughput, and presents the ability of one to create genetically modified models. However, successful infarct-sparing therapies in anesthetized mice or isolated mouse hearts may not be successful in more complex models, including conscious mice. Accordingly, a conscious mouse model of myocardial ischemia and reperfusion has the potential to be of major importance for advancing the concepts and methods that drive the development of infarct-sparing therapies. Therefore, we describe, for the first time, the use of an intact, conscious, and unrestrained mouse model of myocardial ischemia-reperfusion and infarction. The conscious mouse model permits occlusion and reperfusion of the left anterior descending coronary artery in an intact, complex model free of the confounding influences of anesthetics and surgical trauma. This methodology may be adopted for advancing the concepts and ideas that drive cardiovascular research.  相似文献   
200.
The mouse has many advantages over other experimental models for the molecular investigation of left ventricular (LV) function. Accordingly, there is a keen interest in, as well as an intense need for, a conscious, chronically instrumented, freely moving mouse model for the determination of cardiac function. To address this need, we used a telemetry device for repeated measurements of LV function in conscious mice at rest and during exercise. For reference, we compared the responses in mice to the responses in identically instrumented conscious rats. The transmitter body of the telemetry device (rat PA-C40; mouse PA-C10; Data Sciences International, St. Paul, MN) was placed in the intraperitoneal space through a ventral abdominal approach (rat) or subcutaneously on the left flank (mouse). The pressure sensor, located within the tip of a catheter, was inserted into the left ventricle through an apical stab wound (18 gauge for rat; 21 gauge for mouse) for continuous, nontethered, recordings of pulsatile LV pressure. A minimum of 1 wk was allowed for recovery and for the animals to regain their presurgical weight. During the recovery period, the animals were handled, weighed, and acclimatized to the laboratory, treadmill, and investigators. Subsequently, LV parameters were recorded at rest and during a graded exercise test. The results document, for the first time, serial assessment of ventricular function during exercise in conscious mice and rats. This methodology may be adopted for advancing the concepts and ideas that drive cardiovascular research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号