首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   14篇
  279篇
  2023年   4篇
  2022年   2篇
  2021年   4篇
  2020年   8篇
  2019年   8篇
  2018年   7篇
  2017年   7篇
  2016年   11篇
  2015年   9篇
  2014年   15篇
  2013年   18篇
  2012年   18篇
  2011年   28篇
  2010年   21篇
  2009年   16篇
  2008年   11篇
  2007年   20篇
  2006年   15篇
  2005年   14篇
  2004年   15篇
  2003年   11篇
  2002年   9篇
  2001年   1篇
  1999年   1篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有279条查询结果,搜索用时 0 毫秒
271.
To increase performance of organic solar cells, the optimization of the electron‐accepting fullerenes has received less attention. Here, an electronic structure study of a novel covalently linked C60‐C70‐heterodimer in blend with the polymer PCDTBT (poly[9‐(1‐octylnonyl)‐9H‐carbazole‐2,7‐diyl]‐2,5‐thiophenediyl‐2,1,3‐benzothiadiazole‐4,7‐diyl‐2,5‐thiophenediyl) is presented. Upon optical excitation of polymer:heterodimer solid films, the unpaired electron is shared between both C60 and C70 cages. In contrast, in the solution the electron is localized on one half of the dimer. Electronic structure calculations reveal that for the C60‐C70‐heterodimer two nearly isoenergetic minima exist, essentially the cis and trans conformers, which are separated by a thermodynamically accessible rotational barrier. In the cis conformation, the edge‐to‐edge distance between the two cages is ca. 4 Å and an unpaired electron is shared between two dimer halves, while in the trans conformation the separation between the fullerene cages is larger and favors electron localization on one half of the heterodimer. By comparison with the experimental data, it is concluded that the cis conformation is preferable in films, and the trans conformation in solution. Modification of the linking molecular bridge opens the possibility to influence the electronic properties of fullerene dimers, which in turn may have an impact on the charge carrier generation efficiency in solar cells.  相似文献   
272.
273.
The presence of pathogenic bacteria is a major health risk factor in food samples and the commercial food supply chain is susceptible to bacterial contamination. Thus, rapid and sensitive identification methods are in demand for the food industry. Quantitative polymerase chain reaction (PCR) is one of the reliable specific methods with reasonably fast assay times. However, many constituents in food samples interfere with PCR, resulting in false results and thus hindering the usability of the method. Therefore, we aimed to develop an aptamer-based magnetic separation system as a sample preparation method for subsequent identification and quantification of the contaminant bacteria by real-time PCR. To achieve this goal, magnetic beads were prepared via suspension polymerization and grafted with glycidylmethacrylate (GMA) brushes that were modified into high quantities of amino groups. The magnetic beads were decorated with two different aptamer sequences binding specifically to Escherichia coli or Salmonella typhimurium. The results showed that even 1.0% milk inhibited PCR, but our magnetic affinity system capture of bacteria from 100% milk samples allowed accurate determination of bacterial contamination at less than 2.0 h with limit of detection around 100 CFU/mL for both bacteria in spiked-milk samples.  相似文献   
274.
There is a great evidence that reactive oxygen species (ROS) play an important role in the pathophysiology of ischemia −reperfusion(I/R)injury in skeletal muscle.Caffeic acid phenethyl ester(CAPE)is a component of honeybeep ropolis.It has antioxidant, anti−inflammatory and free radical scavenger properties.The aim of this study is to determine the protective effects of CAPE against I/R injury in respect of protein oxidation, neutrophil in filtration, and the activities of xanthine oxidase(XO)and adenosine deaminase(AD)onan<invivomodel of skeletal muscle I/R injury.Rats were divided into three equal groups each consisting of sixrats:Sham operation, I/R, and I/R plus CAPE(I/R+CAPE)groups.CAPE was administered intraperitoneally 60 min before the beginning of the reperfusion.At the end of experimental procedure, blood and gastrocnemius muscle tissues were used for biochemical analyses.Tissue protein carbonyl(PC)levels and the activities of XO, myeloperoxidase(MPO) and AD in I/R group were significantly higher than that of control(p0.01, p0.05, p0.01, p0.005, respectively).Administration of CAPE significantly decreased tissue PC levels, MPO and XO activities in skeletal muscle compared to I/R group(p0.01, p0.05, p0.05, respectively).In addition, plasma creatine phosphokinase(CPK), XO and ADactivities were decreased in I/R+CAPE group compared to I/R group(p0.05, p0.05, p0.001). The results of this study revealed that free radical attacks may play an important role in the pathogenesis of skeletal muscle I/R injury. Also, the potent free radical scavenger compound, CAPE, may have protective potential in this process. Therefore, it can be speculated that CAPE or other antioxidant agents may be useful in the treatment of I/R injury as well as diffused traumatic injury of skeletal muscle.  相似文献   
275.
Proliferating cell nuclear antigen (PCNA) is a DNA polymerase cofactor and regulator of replication-linked functions. Upon DNA damage, yeast and vertebrate PCNA is modified at the conserved lysine K164 by ubiquitin, which mediates error-prone replication across lesions via translesion polymerases. We investigated the role of PCNA ubiquitination in variants of the DT40 B cell line that are mutant in K164 of PCNA or in Rad18, which is involved in PCNA ubiquitination. Remarkably, the PCNAK164R mutation not only renders cells sensitive to DNA-damaging agents, but also strongly reduces activation induced deaminase-dependent single-nucleotide substitutions in the immunoglobulin light-chain locus. This is the first evidence, to our knowledge, that vertebrates exploit the PCNA-ubiquitin pathway for immunoglobulin hypermutation, most likely through the recruitment of error-prone DNA polymerases.  相似文献   
276.
Abstract: The thermodynamic parameters for [3H]-ethylketocyclazocine binding in frog ( Rana esculenta ) brain membranes have been examined. Computer-based nonlinear regression analysis of the untransformed equilibrium displacement data showed that this ligand bound to two sites with different affinities and capacities in this tissue. K A values derived from equilibrium displacement curves have been used for calculating the changes in the standard Gibbs energy, enthalpy, and entropy during the binding process. Van't Hoff plots are bipartite, with transitions occurring at 18°C for both the high- and the low-affinity sites. For the high-affinity site, the reaction appears to be associated with a decrease in enthalpy below the transition temperature and a significant gain in entropy above this temperature. The reverse appears to be true for the low-affinity site. We conclude that this profile fairly approximates the mixed agonist-antagonist nature of this ligand and surmise that thermodynamic analysis could be a very useful tool for characterization of the nature of cloned opioid receptors in vitro.  相似文献   
277.
CD59 is a crucial complement regulatory protein that inhibits the terminal step of the complement activation cascade by interfering with the binding of C9 to C5b-8, thus preventing the formation of the membrane attack complex (MAC). We recently reported that the mouse genome contains two Cd59 genes, while the human and rat genomes each contain only one Cd59 gene (Qian et al. 2000). Here, we describe the genomic structure, comparative activity, and tissue distribution of these two mouse genes, designated Cd59a and Cd59b. The mouse Cd59 genes encompass a total of 45.6 kb with each gene having four exons. Cd59a spans 19 kb, and Cd59b spans 15 kb, with approximately 11.6 kb of genomic DNA separating the two genes. The overall sequence similarity between Cd59a and Cd59b is approximately 60%. The sequence similarity between exon 2, exon 3, and exon 4 and the respective flanking regions between the two genes is over 85%, but exon 1 and its flanking regions are totally different. Comparative studies of the activity of both genes as inhibitors of MAC formation revealed that Cd59b has a specific activity that is six times higher than that of Cd59a. Using polyclonal antibodies specific to either Cd59a or Cd59b, we showed that Cd59a and Cd59b are both widely expressed in the kidneys, brain, lungs, spleen, and testis, as well as in the blood vessels of most mouse tissues. Interestingly, testicular Cd59a appeared to be expressed exclusively in spermatids, whereas Cd59b was expressed in more mature sperm cells. These results suggest that even though Cd59a and Cd59b are expressed in multiple tissues, they may play some different roles, particularly in reproduction. Received: 9 February 2001 / Accepted: 18 April 2001  相似文献   
278.
Genetic structures of Bombina bombina populations, located as peripheral isolates in Turkish Thrace and northwestern Anatolia, were analyzed by polyacrylamide gel electrophoresis using 20 allozyme loci, to investigate the populations’ current genetic variation and possible colonization history. Significant genetic variability was detected in most of the loci and all populations. Allozyme pairwise F ST matrices and distribution of allele frequencies indicate their very close genetic relationships and relatively recent formation. Mean genetic distance values between Thracian and Anatolian populations indicate a Middle or Upper Pleistocene lineage separation before the formation of the Bosporus as an isolating geographic barrier. All the samples show substantial heterozygosity excess, and there was statistically significant evidence of recent bottlenecks. The extent and patterns of genetic divergence indicate that the Anatolian and Thracian populations have probably experienced bottlenecks, and incipient speciation may have occurred in Anatolian populations of B. bombina.  相似文献   
279.
Drug resistance is a significant challenge of daily oncology practice. Docetaxel and gossypol both have antitumoral activity in hormone-refractory prostate cancer (HRPC). Our results revealed that docetaxel and gossypol were synergistically cytotoxic and apoptotic in PC-3 cells in a dose- and time-dependent manner. We further investigated the expression profiles of genes involved in drug resistance and metabolism with a Human Cancer Drug Resistance and Metabolism PCR Array® (SuperArray). Six of the 84 genes that are known to regulate drug resistance, metabolism, cell cycle, DNA repair and oncogenesis were downregulated ≥3-fold change by the combination treatment. These results may be important in devising mechanism-based and targeted therapeutic strategies for prostate cancer, especially in devising combination therapy for drug resistant prostate cancers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号