首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   9篇
  2022年   1篇
  2018年   1篇
  2017年   2篇
  2015年   5篇
  2014年   4篇
  2013年   6篇
  2012年   13篇
  2011年   10篇
  2010年   9篇
  2009年   6篇
  2008年   6篇
  2007年   4篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   7篇
  2001年   5篇
  2000年   2篇
  1999年   5篇
  1998年   3篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1967年   1篇
  1950年   1篇
  1944年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
121.
Verrucomicrobia is a bacterial phylum that is commonly detected in soil, but little is known about the distribution and diversity of this phylum in the marine environment. To address this, we analyzed the marine microbial community composition in 506 samples from the International Census of Marine Microbes as well as 11 coastal samples taken from the California Current. These samples from both the water column and sediments covered a wide range of environmental conditions. Verrucomicrobia were present in 98% of the analyzed samples, and thus appeared nearly ubiquitous in the ocean. Based on the occurrence of amplified 16S ribosomal RNA sequences, Verrucomicrobia constituted on average 2% of the water column and 1.4% of the sediment bacterial communities. The diversity of Verrucomicrobia displayed a biogeography at multiple taxonomic levels and thus, specific lineages appeared to have clear habitat preference. We found that subdivision 1 and 4 generally dominated marine bacterial communities, whereas subdivision 2 was more frequent in low salinity waters. Within the subdivisions, Verrucomicrobia community composition were significantly different in the water column compared with sediment as well as within the water column along gradients of salinity, temperature, nitrate, depth and overall water column depth. Although we still know little about the ecophysiology of Verrucomicrobia lineages, the ubiquity of this phylum suggests that it may be important for the biogeochemical cycle of carbon in the ocean.  相似文献   
122.
Coastal sands filter and accumulate organic and inorganic materials from the terrestrial and marine environment, and thus provide a high diversity of microbial niches. Sands of temperate climate zones represent a temporally and spatially highly dynamic marine environment characterized by strong physical mixing and seasonal variation. Yet little is known about the temporal fluctuations of resident and rare members of bacterial communities in this environment. By combining community fingerprinting via pyrosequencing of ribosomal genes with the characterization of multiple environmental parameters, we disentangled the effects of seasonality, environmental heterogeneity, sediment depth and biogeochemical gradients on the fluctuations of bacterial communities of marine sands. Surprisingly, only 3–5% of all bacterial types of a given depth zone were present at all times, but 50–80% of them belonged to the most abundant types in the data set. About 60–70% of the bacterial types consisted of tag sequences occurring only once over a period of 1 year. Most members of the rare biosphere did not become abundant at any time or at any sediment depth, but varied significantly with environmental parameters associated with nutritional stress. Despite the large proportion and turnover of rare organisms, the overall community patterns were driven by deterministic relationships associated with seasonal fluctuations in key biogeochemical parameters related to primary productivity. The maintenance of major biogeochemical functions throughout the observation period suggests that the small proportion of resident bacterial types in sands perform the key biogeochemical processes, with minimal effects from the rare fraction of the communities.  相似文献   
123.
Huse SM  Ye Y  Zhou Y  Fodor AA 《PloS one》2012,7(6):e34242
We explore the microbiota of 18 body sites in over 200 individuals using sequences amplified V1-V3 and the V3-V5 small subunit ribosomal RNA (16S) hypervariable regions as part of the NIH Common Fund Human Microbiome Project. The body sites with the greatest number of core OTUs, defined as OTUs shared amongst 95% or more of the individuals, were the oral sites (saliva, tongue, cheek, gums, and throat) followed by the nose, stool, and skin, while the vaginal sites had the fewest number of OTUs shared across subjects. We found that commonalities between samples based on taxonomy could sometimes belie variability at the sub-genus OTU level. This was particularly apparent in the mouth where a given genus can be present in many different oral sites, but the sub-genus OTUs show very distinct site selection, and in the vaginal sites, which are consistently dominated by the Lactobacillus genus but have distinctly different sub-genus V1-V3 OTU populations across subjects. Different body sites show approximately a ten-fold difference in estimated microbial richness, with stool samples having the highest estimated richness, followed by the mouth, throat and gums, then by the skin, nasal and vaginal sites. Richness as measured by the V1-V3 primers was consistently higher than richness measured by V3-V5. We also show that when such a large cohort is analyzed at the genus level, most subjects fit the stool "enterotype" profile, but other subjects are intermediate, blurring the distinction between the enterotypes. When analyzed at the finer-scale, OTU level, there was little or no segregation into stool enterotypes, but in the vagina distinct biotypes were apparent. Finally, we note that even OTUs present in nearly every subject, or that dominate in some samples, showed orders of magnitude variation in relative abundance emphasizing the highly variable nature across individuals.  相似文献   
124.
Glioblastoma (GBM) and other malignant gliomas are aggressive primary neoplasms of the brain that exhibit notable refractivity to standard treatment regimens. Recent large-scale molecular profiling has revealed distinct disease subclasses within malignant gliomas whose defining genomic features highlight dysregulated molecular networks as potential targets for therapeutic development. The "proneural" designation represents the largest and most heterogeneous of these subclasses, and includes both a large fraction of GBMs along with most of their lower-grade astrocytic and oligodendroglial counterparts. The pathogenesis of proneural gliomas has been repeatedly associated with dysregulated PDGF signaling. Nevertheless, genomic amplification or activating mutations involving the PDGF receptor (PDGFRA) characterize only a subset of proneural GBMs, while the mechanisms driving dysregulated PDGF signaling and downstream oncogenic networks in remaining tumors are unclear. MicroRNAs (miRNAs) are a class of small, noncoding RNAs that regulate gene expression by binding loosely complimentary sequences in target mRNAs. The role of miRNA biology in numerous cancer variants is well established. In an analysis of miRNA involvement in the phenotypic expression and regulation of oncogenic PDGF signaling, we found that miR-34a is downregulated by PDGF pathway activation in vitro. Similarly, analysis of data from the Cancer Genome Atlas (TCGA) revealed that miR-34a expression is significantly lower in proneural gliomas compared to other tumor subtypes. Using primary GBM cells maintained under neurosphere conditions, we then demonstrated that miR-34a specifically affects growth of proneural glioma cells in vitro and in vivo. Further bioinformatic analysis identified PDGFRA as a direct target of miR-34a and this interaction was experimentally validated. Finally, we found that PDGF-driven miR-34a repression is unlikely to operate solely through a p53-dependent mechanism. Taken together, our data support the existence of reciprocal negative feedback regulation involving miR-34 and PDGFRA expression in proneural gliomas and, as such, identify a subtype specific therapeutic potential for miR-34a.  相似文献   
125.
126.
127.
Summary When growing on glucose, fructose or sucrose, Candida apicola produces large amounts of sophorose lipid during the stationary growth phase. In contrast, no sophorose lipid formation is observed with galactose or maltose independently whether hydrocarbons are present or not. The biosynthesis of the biosurfactant is therefore not simply a prerequisite for the degradation of extracellular hydrocarbon.  相似文献   
128.
Matrix metalloproteinases are secreted from different cells as inactive zymogens. For their activation in vitro organomercurials may be used, the presence of which, however, can falsify activity assays and modulate the effects of the proteases in subsequent investigations. Here, we demonstrate the binding of human matrix metalloproteinase 1 to a thiophilic resin (mercaptoethylquinazolinedione derivatized agarose) and take advantage of this thiophilic interaction for the purification of organomercurial activated matrix metalloproteinase 1 from the supernatant of a thyroid carcinoma cell line in connection with the simultaneous removal of the activator.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   
129.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号