首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   646篇
  免费   62篇
  国内免费   15篇
  2023年   5篇
  2022年   5篇
  2021年   19篇
  2020年   9篇
  2019年   10篇
  2018年   9篇
  2017年   6篇
  2016年   17篇
  2015年   23篇
  2014年   29篇
  2013年   33篇
  2012年   39篇
  2011年   33篇
  2010年   24篇
  2009年   30篇
  2008年   33篇
  2007年   25篇
  2006年   26篇
  2005年   25篇
  2004年   18篇
  2003年   22篇
  2002年   21篇
  2001年   21篇
  2000年   13篇
  1999年   10篇
  1998年   9篇
  1997年   10篇
  1996年   11篇
  1995年   8篇
  1992年   9篇
  1991年   9篇
  1990年   6篇
  1989年   14篇
  1988年   12篇
  1987年   14篇
  1986年   13篇
  1985年   9篇
  1984年   4篇
  1983年   6篇
  1982年   4篇
  1981年   5篇
  1980年   5篇
  1979年   4篇
  1977年   11篇
  1976年   4篇
  1974年   6篇
  1972年   5篇
  1970年   9篇
  1969年   5篇
  1968年   8篇
排序方式: 共有723条查询结果,搜索用时 15 毫秒
71.
Biliary pancreatitis is the most common etiology for acute pancreatitis, yet its pathophysiological mechanism remains unclear. Ca(2+) signals generated within the pancreatic acinar cell initiate the early phase of pancreatitis, and bile acids can elicit anomalous acinar cell intracellular Ca(2+) release. We previously demonstrated that Ca(2+) released via the intracellular Ca(2+) channel, the ryanodine receptor (RyR), contributes to the aberrant Ca(2+) signal. In this study, we examined whether RyR inhibition protects against pathological Ca(2+) signals, acinar cell injury, and pancreatitis from bile acid exposure. The bile acid tauro-lithocholic acid-3-sulfate (TLCS) induced intracellular Ca(2+) oscillations at 50 μM and a peak-plateau signal at 500 μM, and only the latter induced acinar cell injury, as determined by lactate dehydrogenase (LDH) leakage. Pretreatment with the RyR inhibitors dantrolene or ryanodine converted the peak-plateau signal to a mostly oscillatory pattern (P < 0.05). They also reduced acinar cell LDH leakage, basolateral blebbing, and propidium iodide uptake (P < 0.05). In vivo, a single dose of dantrolene (5 mg/kg), given either 1 h before or 2 h after intraductal TLCS infusion, reduced the severity of pancreatitis down to the level of the control (P < 0.05). These results suggest that the severity of biliary pancreatitis may be ameliorated by the clinical use of RyR inhibitors.  相似文献   
72.
Two new series of benzimidazole bearing oxadiazole[1-(1H-benzo[d]imidazol-2-yl)-3-(5-substituted-1,3,4-oxadiazol-2-yl)propan-1-ones (4a-l)] and triazolo-thiadiazoles[1-(1H-benzo[d]imidazol-2-yl)-3-(6-(substituted)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-3-yl)propan-1-one (7a-e)] have been synthesized successfully from4-(1H-benzo[d]imidazol-2-yl)-4-oxobutanehydrazide (3) with an aim to produce promising anticancer agents. In vitro anticancer activities of synthesized compounds were screened at the National Cancer Institute (NCI), USA, according to their applied protocol against full NCI 60 human cell lines panel; results showed good to remarkable anticancer activity. Among them, compound (4j, NCS: 761980) exhibited significant growth inhibition and further screened at 10-fold dilutions of five different concentrations (0.01, 0.1, 1, 10 and 100μM) with GI(50) values ranging from 0.49 to 48.0μM and found superior for the non-small cell lung cancer cell lines like HOP-92 (GI(50) 0.49, TGI 19.9,LC(50) >100 and Log(10)GI(50) -6.30, Log(10)TGI -4.70, Log(10)LC(50) >-4.00).  相似文献   
73.
74.
Angiotensin (Ang) I-converting enzyme (ACE) is a Zn(2+) metalloprotease with two homologous catalytic domains. Both the N- and C-terminal domains are peptidyl dipeptidases. Hydrolysis by ACE of its decapeptide substrate Ang I is increased by Cl(-), but the molecular mechanism of this regulation is unclear. A search for single substitutions to Gln among all conserved basic residues (Lys/Arg) in human ACE C-domain identified R1098Q as the sole mutant that lacked Cl(-) dependence. Cl(-) dependence is also lost when the equivalent Arg in the N-domain, Arg(500), is substituted with Gln. The Arg(1098) to Lys substitution reduced Cl(-) binding affinity by approximately 100-fold. In the absence of Cl(-), substrate binding affinity (1/K(m)) of and catalytic efficiency (k(cat)/K(m)) for Ang I hydrolysis are increased 6.9- and 32-fold, respectively, by the Arg(1098) to Gln substitution, and are similar (<2-fold difference) to the respective wild-type C-domain catalytic constants in the presence of optimal [Cl(-)]. The Arg(1098) to Gln substitution also eliminates Cl(-) dependence for hydrolysis of tetrapeptide substrates, but activity toward these substrates is similar to that of the wild-type C-domain in the absence of Cl(-). These findings indicate that: 1) Arg(1098) is a critical residue of the C-domain Cl(-)-binding site and 2) a basic side chain is necessary for Cl(-) dependence. For tetrapeptide substrates, the inability of R1098Q to recreate the high affinity state generated by the Cl(-)-C-domain interaction suggests that substrate interactions with the enzyme-bound Cl(-) are much more important for the hydrolysis of short substrates than for Ang I. Since Cl(-) concentrations are saturating under physiological conditions and Arg(1098) is not critical for Ang I hydrolysis, we speculate that the evolutionary pressure for the maintenance of the Cl(-)-binding site is its ability to allow cleavage of short cognate peptide substrates at high catalytic efficiencies.  相似文献   
75.
76.
Binding of the isolated ATPase (F1) to its naturally occurring inhibitor protein was studied by two novel, independent techniques. High-pressure gel permeation chromatography revealed one tight binding site (Kd = 0.46 microM) for the inhibitor on F1, and a number of weak, non-specific sites. Use of an antibody directed against a non-binding region of the inhibitor protein demonstrated the formation of inhibitor/F1/immunoglobulin G complexes of 1:1:1 and 2:2:1 stoichiometry, but not of the putatively more stable cyclic 4:2:2 complexes. It was concluded that, despite the presence of three beta-subunits, only one site per F1 molecule is available for binding its inhibitor protein.  相似文献   
77.
78.
79.
ABSTRACT

Recently, the enzymatic approach has attracted much interest in the decolorization/degradation of textile and other industrially important dyes from wastewater as an alternative strategy to conventional chemical, physical and biological treatments, which pose serious limitations. Enzymatic treatment is very useful due to the action of enzymes on pollutants even when they are present in very dilute solutions and recalcitrant to the action of various microbes participating in the degradation of dyes. The potential of the enzymes (peroxidases, manganese peroxidases, lignin peroxidases, laccases, microperoxidase-11, polyphenol oxidases, and azoreductases) has been exploited in the decolorization and degradation of dyes. Some of the recalcitrant dyes were not degraded/decolorized in the presence of such enzymes. The addition of certain redox mediators enhanced the range of substrates and efficiency of degradation of the recalcitrant compounds. Several redox mediators have been reported in the literature, but very few of them are frequently used (e.g., 1-hydroxybenzotriazole, veratryl alcohol, violuric acid, 2-methoxy-phenothiazone). Soluble enzymes cannot be exploited at the large scale due to limitations such as stability and reusability. Therefore, the use of immobilized enzymes has significant advantages over soluble enzymes. In the near future, technology based on the enzymatic treatment of dyes present in the industrial effluents/wastewater will play a vital role. Treatment of wastewater on a large scale will also be possible by using reactors containing immobilized enzymes.  相似文献   
80.
In our present study, binding between an important anti renal cancer drug temsirolimus and human transferrin (hTF) was investigated employing spectroscopic and molecular docking approach. In the presence of temsirolimus, hyper chromaticity is observed in hTF in UV spectroscopy suggestive of complex formation between hTF and temsirolimus. Fluorescence spectroscopy revealed the occurrence of quenching in hTF in the presence of temsirolimus implying complex formation taking place between hTF and temsirolimus. Further, the mode of interaction between hTF and temsirolimus was revealed to be static by fluorescence quenching analysis at 3 different temperatures. Binding constant values obtained employing fluorescence spectroscopy depicts strong interaction between hTF and temsirolimus; temsirolimus binds to hTF at 298 K with a binding constant of .32 × 104 M?1 implying the strength of this interaction. The negative Gibbs free energy obtained through quenching experiments is evident of the fact that the binding is spontaneous. CD spectra of hTF also showed a downward shift in the presence of temsirolimus as compared with free hTF implying complex formation between hTF and temsirolimus. Molecular docking was performed with a view to find out which residues are key players in this interaction. The importance of our study stems from the fact it will provide an insight into binding pattern of commonly administered renal cancer drug with an important protein that plays a pivotal role in many physiological processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号