首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   616篇
  免费   29篇
  国内免费   2篇
  2023年   2篇
  2022年   9篇
  2021年   14篇
  2020年   8篇
  2019年   7篇
  2018年   12篇
  2017年   12篇
  2016年   20篇
  2015年   39篇
  2014年   38篇
  2013年   39篇
  2012年   54篇
  2011年   46篇
  2010年   30篇
  2009年   31篇
  2008年   42篇
  2007年   40篇
  2006年   31篇
  2005年   37篇
  2004年   28篇
  2003年   25篇
  2002年   22篇
  2001年   11篇
  2000年   16篇
  1999年   10篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1961年   1篇
排序方式: 共有647条查询结果,搜索用时 156 毫秒
51.
HrpN(EP), from the gram-negative pathogen, Erwinia pyrifoliae, is a member of the harpin group of proteins, inducing pathogen resistance and hypersensitive cell death in plants. When the hrpN(EP) gene driven by the OsCc1 promoter was introduced into tobacco plants via Agrobacterium-mediated transformation, their resistance to the necrotrophic fungal pathogen, Botrytis cinerea, increased. Resistance to B. cinerea was correlated with enhanced induction of SA-dependent genes such as PR-1a, PR2, PR3 and Chia5, of JA-dependent genes such as PR-1b, and of genes related to ethylene production, such as NT-EFE26, NT-1A1C, DS321, NT-ACS1 and NT-ACS2. However the expression of NPR1, which is thought to be essential for multiple-resistance, did not increase. Since the pattern of expression of defense-related genes in hrpN(EP)-expressing tobacco differed from that in plants expressing hpaG(Xoo) from Xanthomonas oryzae pv. Oryzae, these results suggest that different harpins can affect the expression of different defense-related genes, as well as resistance to different plant pathogens.  相似文献   
52.
In this age of massive genetic and protein information, a fast and reliable method of studying in vivo protein-protein interactions is necessary. We have developed a novel system that can overcome limitations of existing assay methods. This new method adopts two existing systems for fast analysis of diverse protein-protein interactions. For rapid, large-scale cloning, we adopted the Gateway system and developed novel destination vectors containing YFP N-terminus (YN) or YFP C-terminus (YC) to visualize protein-protein interactions in vivo using bimolecular fluorescence complementation (BiFC). Using this system, we investigated molecular interactions among the three POZ-domain regulatory proteins mAPM-1, LRF, KLHL10 that belong to a subgroup of human POZ-domain proteins, and showed that the POZ-domains of mAPM-1, LRF and KLHL10 could form both homodimers and heterodimers. This new method is a highly efficient, sensitive and specific assay method for protein-protein interaction in vivo.  相似文献   
53.
54.
In order to induce high levels of protein secretion, we have constructed a recombinant plasmid, designated pBP244, into which was incorporated key components of the type-II Sec-dependent secretion system, including LepB (signal peptidase), SecA (ATPase), and SecB (chaperone). The biological activities of the LepB, SecA, and SecB components expressed from genes harbored by pBP244 appeared to play their normal roles. In order to evaluate the protein secretion, a pspA (Streptococcus pneumoniae surface protein A) gene was cloned into pBP244, resulting in pBP438. S. typhimurium harboring pBP438 grown until the stationary phase, secreted a higher level of PspA into the culture supernatants than did the strain harboring pYA3494. The strain harboring pBP438 secreted a supernatant amount 1.71-fold, a periplasmic space amount 1.47-fold, and an outer membrane amount 1.49-fold higher than that of pYA3494. S. typhimurium chi8554 kept the Asd+ plasmid pBP244 and pBP438 for 60 generations in LB broth harboring DAP, thereby indicating that pBP244 and pBP438 were quite stable in the Salmonella strain.  相似文献   
55.

Background  

The Human cervical cancer oncogene (HCCR-1) has been isolated as a human oncoprotein, and has shown strong tumorigenic features. Its potential role in tumorigenesis may result from a negative regulation of the p53 tumor suppressor gene.  相似文献   
56.
57.
58.
Ginsenoside Rg5 is a compound newly synthesized during the steaming process of ginseng; however, its biological activity has not been elucidated with regard to endothelial function. We found that Rg5 stimulated in vitro angiogenesis of human endothelial cells, consistent with increased neovascularization and blood perfusion in a mouse hind limb ischemia model. Rg5 also evoked vasorelaxation in aortic rings isolated from wild type and high cholesterol-fed ApoE−/− mice but not from endothelial nitric-oxide synthase (eNOS) knock-out mice. Angiogenic activity of Rg5 was highly associated with a specific increase in insulin-like growth factor-1 receptor (IGF-1R) phosphorylation and subsequent activation of multiple angiogenic signals, including ERK, FAK, Akt/eNOS/NO, and Gi-mediated phospholipase C/Ca2+/eNOS dimerization pathways. The vasodilative activity of Rg5 was mediated by the eNOS/NO/cGMP axis. IGF-1R knockdown suppressed Rg5-induced angiogenesis and vasorelaxation by inhibiting key angiogenic signaling and NO/cGMP pathways. In silico docking analysis showed that Rg5 bound with high affinity to IGF-1R at the same binding site of IGF. Rg5 blocked binding of IGF-1 to its receptor with an IC50 of ∼90 nmol/liter. However, Rg5 did not induce vascular inflammation and permeability. These data suggest that Rg5 plays a novel role as an IGF-1R agonist, promoting therapeutic angiogenesis and improving hypertension without adverse effects in the vasculature.  相似文献   
59.
Thioredoxin (TRX) is a disulfide reductase present ubiquitously in all taxa and plays an important role as a regulator of cellular redox state. Recently, a redox-independent, chaperone function has also been reported for some thioredoxins. We previously identified nodulin-35, the subunit of soybean uricase, as an interacting target of a cytosolic soybean thioredoxin, GmTRX. Here we report the further characterization of the interaction, which turns out to be independent of the disulfide reductase function and results in the co-localization of GmTRX and nodulin-35 in peroxisomes, suggesting a possible function of GmTRX in peroxisomes. In addition, the chaperone function of GmTRX was demonstrated in in vitro molecular chaperone activity assays including the thermal denaturation assay and malate dehydrogenase aggregation assay. Our results demonstrate that the target of GmTRX is not only confined to the nodulin-35, but many other peroxisomal proteins, including catalase (AtCAT), transthyretin-like protein 1 (AtTTL1), and acyl-coenzyme A oxidase 4 (AtACX4), also interact with the GmTRX. Together with an increased uricase activity of nodulin-35 and reduced ROS accumulation observed in the presence of GmTRX in our results, especially under heat shock and oxidative stress conditions, it appears that GmTRX represents a novel thioredoxin that is co-localized to the peroxisomes, possibly providing functional integrity to peroxisomal proteins.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号