首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2622篇
  免费   336篇
  国内免费   2篇
  2021年   26篇
  2019年   28篇
  2017年   27篇
  2016年   33篇
  2015年   44篇
  2014年   74篇
  2013年   93篇
  2012年   109篇
  2011年   93篇
  2010年   82篇
  2009年   75篇
  2008年   107篇
  2007年   115篇
  2006年   99篇
  2005年   104篇
  2004年   111篇
  2003年   72篇
  2002年   87篇
  2001年   79篇
  2000年   79篇
  1999年   62篇
  1998年   52篇
  1997年   42篇
  1996年   33篇
  1995年   30篇
  1994年   30篇
  1993年   26篇
  1992年   65篇
  1991年   64篇
  1990年   56篇
  1989年   65篇
  1988年   51篇
  1987年   47篇
  1986年   40篇
  1985年   49篇
  1984年   44篇
  1983年   36篇
  1982年   32篇
  1981年   27篇
  1980年   27篇
  1979年   31篇
  1978年   27篇
  1977年   25篇
  1976年   35篇
  1975年   31篇
  1974年   26篇
  1973年   24篇
  1972年   39篇
  1969年   25篇
  1968年   24篇
排序方式: 共有2960条查询结果,搜索用时 15 毫秒
991.
Understanding the relationship of the size and shape of an organism to the size, shape, and number of its constituent cells is a basic problem in biology; however, numerous studies indicate that the relationship is complex and often nonintuitive. To investigate this problem, we used a system for the inducible expression of genes involved in the G1/S transition of the plant cell cycle and analyzed the outcome on leaf shape. By combining a careful developmental staging with a quantitative analysis of the temporal and spatial response of cell division pattern and leaf shape to these manipulations, we found that changes in cell division frequency occurred much later than the observed changes in leaf shape. These data indicate that altered cell division frequency cannot be causally involved in the observed change of shape. Rather, a shift to a smaller cell size as a result of the genetic manipulations performed correlated with the formation of a smoother leaf perimeter, i.e. appeared to be the primary cellular driver influencing form. These data are discussed in the context of the relationship of cell division, growth, and leaf size and shape.  相似文献   
992.
993.
994.
995.
Economic threshold for soybean aphid (Hemiptera: Aphididae)   总被引:9,自引:0,他引:9  
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), reached damaging levels in 2003 and 2005 in soybean, Glycine max (L.) Merrill, in most northern U.S. states and Canadian provinces, and it has become one of the most important pests of soybean throughout the North Central region. A common experimental protocol was adopted by participants in six states who provided data from 19 yield-loss experiments conducted over a 3-yr period. Population doubling times for field populations of soybean aphid averaged 6.8 d +/- 0.8 d (mean +/- SEM). The average economic threshold (ET) over all control costs, market values, and yield was 273 +/- 38 (mean +/- 95% confidence interval [CI], range 111-567) aphids per plant. This ET provides a 7-d lead time before aphid populations are expected to exceed the economic injury level (EIL) of 674 +/- 95 (mean +/- 95% CI, range 275-1,399) aphids per plant. Peak aphid density in 18 of the 19 location-years occurred during soybean growth stages R3 (beginning pod formation) to R5 (full size pod) with a single data set having aphid populations peaking at R6 (full size green seed). The ET developed here is strongly supported through soybean growth stage R5. Setting an ET at lower aphid densities increases the risk to producers by treating an aphid population that is growing too slowly to exceed the EIL in 7 d, eliminates generalist predators, and exposes a larger portion of the soybean aphid population to selection by insecticides, which could lead to development of insecticide resistance.  相似文献   
996.
997.
Rocky intertidal algae harbor a diverse invertebrate meiofauna of arthropods, nematodes and other invertebrates. Despite its ecological importance, relatively little is known about the diversity and composition of this important component of intertidal biodiversity. In this study, we quantified species composition, abundance and distribution of ostracodes, an important group of phytal meiofauna, at two different intertidal areas in southern California. In total, we recovered 22 ostracode species from three different orders (16 podocopids, five myodocopids and one platycopid), nearly a quarter of which could not be assigned to existing taxa. The abundance of ostracodes differed significantly among algal types, with structurally complex algae bearing many more ostracodes per gram of algae than simple forms (blade-like algae and the surfgrass Phyllospadix). Although most ostracode species were recovered from multiple kinds of algae, different algae harbored distinct assemblages that could be discriminated statistically on the basis of relative abundances of ostracode species. This segregation of the ostracode fauna according to algal species is evident even over very short spatial scales (<1 m). Finally, ostracode samples from turf-forming algae were more species rich than samples from other kinds of macroalgae. Since turf-forming algae are easily damaged by human trampling, this component of ostracode biodiversity may be particularly vulnerable to anthropogenic impacts on the intertidal habitat. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: K. Martens  相似文献   
998.
To address the need for new antibacterials, a number of bacterial genomes have been systematically disrupted to identify essential genes. Such programs have focused on the disruption of single genes and may have missed functions encoded by gene pairs or multiple genes. In this work, we hypothesized that we could predict the identity of pairs of proteins within one organism that have the same function. We identified 135 putative protein pairs in Bacillus subtilis and attempted to disrupt the genes forming these, singly and then in pairs. The single gene disruptions revealed new genes that could not be disrupted individually and other genes required for growth in minimal medium or for sporulation. The pairwise disruptions revealed seven pairs of proteins that are likely to have the same function, as the presence of one protein can compensate for the absence of the other. Six of these pairs are essential for bacterial viability and in four cases show a pattern of species conservation appropriate for potential antibacterial development. This work highlights the importance of combinatorial studies in understanding gene duplication and identifying functional redundancy.  相似文献   
999.
Brain, liver, kidney, heart, and skeletal muscle from fatty liver dystrophy (fld/fld) mice, which do not express lipin 1 (lipin), contained much less Mg(2+)-dependent phosphatidic acid phosphatase (PAP) activity than tissues from wild type mice. Lipin harboring the fld(2j) (Gly(84) --> Arg) mutation exhibited relatively little PAP activity. These results indicate that lipin is a major PAP in vivo and that the loss of PAP activity contributes to the fld phenotype. PAP activity was readily detected in immune complexes of lipin from 3T3-L1 adipocytes, where the protein was found both as a microsomal form and a soluble, more highly phosphorylated, form. Fifteen phosphorylation sites were identified by mass spectrometric analyses. Insulin increased the phosphorylation of multiple sites and promoted a gel shift that was due in part to phosphorylation of Ser(106). In contrast, epinephrine and oleic acid promoted dephosphorylation of lipin. The PAP-specific activity of lipin was not affected by the hormones or by dephosphorylation of lipin with protein phosphatase 1. However, the ratio of soluble to microsomal lipin was markedly increased in response to insulin and decreased in response to epinephrine and oleic acid. The results suggest that insulin and epinephrine control lipin primarily by changing localization rather than intrinsic PAP activity.  相似文献   
1000.
Eimeria tenella, in common with other parasitic protozoa of the phylum Apicomplexa, invades host cells using an actinomyosin-powered "glideosome" complex and requires the secretion of adhesive proteins from the microneme organelles onto the parasite surface. Microneme proteins of E. tenella include EtMIC4, a transmembrane protein that has multiple thrombospondin type I domains and calcium-binding epidermal growth factor-like domains in its extracellular domain, and EtMIC5, a soluble protein composed of 11 tandemly repeated domains that belong to the plasminogen-apple-nematode superfamily. We show here that EtMIC4 and EtMIC5 interact to form an oligomeric, ultrahigh molecular mass protein complex. The complex was purified from lysed parasites by non-denaturing techniques, and the stoichiometry was shown to be [EtMIC4](2):[EtMIC5](1), with an octamer of EtMIC4 bound non-covalently to a tetramer of EtMIC5. The complex is formed within the parasite secretory pathway and is maintained after secretion onto the surface of the parasite. The purified complex binds to a number of epithelial cell lines in culture. Identification and characterization of this complex contributes to an overall understanding of the role of multimolecular protein complexes in specific interactions between pathogens and their hosts during infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号