首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2622篇
  免费   336篇
  国内免费   2篇
  2021年   26篇
  2019年   28篇
  2017年   27篇
  2016年   33篇
  2015年   44篇
  2014年   74篇
  2013年   93篇
  2012年   109篇
  2011年   93篇
  2010年   82篇
  2009年   75篇
  2008年   107篇
  2007年   115篇
  2006年   99篇
  2005年   104篇
  2004年   111篇
  2003年   72篇
  2002年   87篇
  2001年   79篇
  2000年   79篇
  1999年   62篇
  1998年   52篇
  1997年   42篇
  1996年   33篇
  1995年   30篇
  1994年   30篇
  1993年   26篇
  1992年   65篇
  1991年   64篇
  1990年   56篇
  1989年   65篇
  1988年   51篇
  1987年   47篇
  1986年   40篇
  1985年   49篇
  1984年   44篇
  1983年   36篇
  1982年   32篇
  1981年   27篇
  1980年   27篇
  1979年   31篇
  1978年   27篇
  1977年   25篇
  1976年   35篇
  1975年   31篇
  1974年   26篇
  1973年   24篇
  1972年   39篇
  1969年   25篇
  1968年   24篇
排序方式: 共有2960条查询结果,搜索用时 46 毫秒
181.
We compare directly under flow two commonly used coarse grained models of linear polymers, namely the flexible finitely extensible nonlinear elastic (FENE) chain, and the freely jointed tangent sphere chain, otherwise known as the freely jointed chain. The comparison is based on viscometric, structural and dynamical properties. We use non-equilibrium molecular dynamics to simulate steady-state systems under planar Couette flow and planar extensional flow. Computed properties include shear and elongational viscosities, normal stresses, radius of gyration and end-to-end distances, order parameters, alignment angles and spin angular velocities. In all computed properties we observe very little difference between the two molecular models. Therefore, the choice of either model is suitable, though there is a computational advantage in the use of the FENE model.  相似文献   
182.
While there has been considerable progress in designing protein–protein interactions, the design of proteins that bind polar surfaces is an unmet challenge. We describe the computational design of a protein that binds the acidic active site of hen egg lysozyme and inhibits the enzyme. The design process starts with two polar amino acids that fit deep into the enzyme active site, identifies a protein scaffold that supports these residues and is complementary in shape to the lysozyme active-site region, and finally optimizes the surrounding contact surface for high-affinity binding. Following affinity maturation, a protein designed using this method bound lysozyme with low nanomolar affinity, and a combination of NMR studies, crystallography, and knockout mutagenesis confirmed the designed binding surface and orientation. Saturation mutagenesis with selection and deep sequencing demonstrated that specific designed interactions extending well beyond the centrally grafted polar residues are critical for high-affinity binding.  相似文献   
183.
Cbx7 is one of five mammalian orthologs of the Drosophila Polycomb. Cbx7 recognizes methylated lysine residues on the histone H3 tail and contributes to gene silencing in the context of the Polycomb repressive complex 1 (PRC1). However, our knowledge of Cbx7 post-translational modifications remains limited. Through combined biochemical and mass spectrometry approaches, we report a novel phosphorylation site on mouse Cbx7 at residue Thr-118 (Cbx7T118ph), near the highly conserved Polycomb box. The generation of a site-specific antibody to Cbx7T118ph demonstrates that Cbx7 is phosphorylated via MAPK signaling. Furthermore, we find Cbx7T118 phosphorylation in murine mammary carcinoma cells, which can be blocked by MEK inhibitors. Upon EGF stimulation, Cbx7 interacts robustly with other members of PRC1. To test the role of Cbx7T118 phosphorylation in gene silencing, we employed a RAS-induced senescence model system. We demonstrate that Cbx7T118 phosphorylation moderately enhances repression of its target gene p16. In summary, we have identified and characterized a novel MAPK-mediated phosphorylation site on Cbx7 and propose that mitogen signaling to the chromatin template regulates PRC1 function.  相似文献   
184.
Nested association mapping (NAM) offers power to dissect complex, quantitative traits. This study made use of a recently developed sorghum backcross (BC)-NAM population to dissect the genetic architecture of flowering time in sorghum; to compare the QTL identified with other genomic regions identified in previous sorghum and maize flowering time studies and to highlight the implications of our findings for plant breeding. A subset of the sorghum BC-NAM population consisting of over 1,300 individuals from 24 families was evaluated for flowering time across multiple environments. Two QTL analysis methodologies were used to identify 40 QTLs with predominately small, additive effects on flowering time; 24 of these co-located with previously identified QTL for flowering time in sorghum and 16 were novel in sorghum. Significant synteny was also detected with the QTL for flowering time detected in a comparable NAM resource recently developed for maize (Zea mays) by Buckler et al. (Science 325:714–718, 2009). The use of the sorghum BC-NAM population allowed us to catalogue allelic variants at a maximal number of QTL and understand their contribution to the flowering time phenotype and distribution across diverse germplasm. The successful demonstration of the power of the sorghum BC-NAM population is exemplified not only by correspondence of QTL previously identified in sorghum, but also by correspondence of QTL in different taxa, specifically maize in this case. The unification across taxa of the candidate genes influencing complex traits, such as flowering time can further facilitate the detailed dissection of the genetic control and causal genes.  相似文献   
185.
The design, synthesis and characterization of a phosphonate inhibitor of N-acetylneuraminate-9-phosphate phosphatase (HDHD4) is described. Compound 3, where the substrate C-9 oxygen was replaced with a nonlabile CH2 group, inhibits HDHD4 with a binding affinity (IC50 11 μM) in the range of the native substrate Neu5Ac-9-P (compound 1, Km 47 μM). Combined SAR, modeling and NMR studies are consistent with the phosphonate group in inhibitor 3 forming a stable complex with native Mg2+. In addition to this key interaction, the C-1 carboxylate of the sugar interacts with a cluster of basic residues, K141, R104 and R72. Comparative NMR studies of compounds 3 and 1 with Ca2+ and Mg2+ are indicative of a highly dynamic process in the active site for the HDHD4/Mg2+/3 complex. Possible explanations for this observation are discussed.  相似文献   
186.
The kynurenine pathway is the major route for the oxidative degradation of the amino acid tryptophan. Activity of the pathway is involved in several disease conditions, both in the periphery and the central nervous system, including cancer, inflammatory disorders, neurological conditions, psychiatric disorders and neurodegenerative diseases. Three enzymes are now known to catalyze the first and rate-limiting step in the catabolism of tryptophan along this pathway: tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO, subsequently named IDO1), both of which have been extensively studied, and a third enzyme, indoleamine 2,3-dioxygenase 2 (IDO2), a relative newcomer to the kynurenine pathway field. The adjuvant chemotherapeutic agent, 1-methyl-d-tryptophan, was intially suggested to target IDO2, implying involvement of IDO2 in tumorigenesis. Subsequently this compound has been suggested to have alternative actions and the physiological and pathophysiological roles of IDO2 are unclear. Targeted genetic interventions and selective inhibitors provide approaches for investigating the biology of IDO2. This review focuses on the current knowledge of IDO2 biology and discusses tools that will assist in further characterizing the enzymes of the kynurenine pathway.  相似文献   
187.

Background

The 60+ members of the mammalian Rab protein family group into subfamilies postulated to share common functionality. The Rab VI subfamily contains 5 Rab proteins, Rab6a/a’, Rab6b, Rab6c and Rab41. High-level knockdown of Rab6a/a’ has little effect on the tightly organized Golgi ribbon in HeLa cells as seen by fluorescence microscopy. In striking contrast, we found Rab41 was strongly required for normal Golgi ribbon organization.

Methods/Results

Treatment of HeLa cells with Rab41 siRNAs scattered the Golgi ribbon into clustered, punctate Golgi elements. Overexpression of GDP-locked Rab41, but not wild type or GTP-locked Rab41, produced a similar Golgi phenotype. By electron microscopy, Rab41 depletion produced short, isolated Golgi stacks. Golgi-associated vesicles accumulated. At low expression levels, wild type and GTP-locked Rab41 showed little concentration in the Golgi region, but puncta were observed and most were in ruffled regions at the cell periphery. There was 25% co-localization of GTP-locked Rab41 with the ER marker, Sec61p. GDP-locked Rab41, as expected, displayed an entirely diffuse cytoplasmic distribution. Depletion of Rab41 or overexpression of GDP-locked Rab41 partially inhibited ER-to-Golgi transport of VSV-G protein. However, Rab41 knockdown had little, if any, effect on endosome-to-Golgi transport of SLTB. Additionally, after a 2-day delay, treatment with Rab41 siRNA inhibited cell growth, while overexpression of GDP-locked Rab41, but not wild type or GTP-locked Rab41, produced a rapid, progressive cell loss. In double knockdown experiments with Rab6, the Golgi ribbon was fragmented, a result consistent with Rab41 and Rab6 acting in parallel.

Conclusion

We provide the first evidence for distinctive Rab41 effects on Golgi organization, ER-to-Golgi trafficking and cell growth. When combined with the evidence that Rab6a/a’ and Rab6b have diverse roles in Golgi function, while Rab6c regulates mitotic function, our data indicate that Rab VI subfamily members, although related by homology and structure, share limited functional conservation.  相似文献   
188.
Sexual selection may cause dietary requirements for reproduction to diverge across the sexes and promote the evolution of different foraging strategies in males and females. However, our understanding of how the sexes regulate their nutrition and the effects that this has on sex‐specific fitness is limited. We quantified how protein (P) and carbohydrate (C) intakes affect reproductive traits in male (pheromone expression) and female (clutch size and gestation time) cockroaches (Nauphoeta cinerea). We then determined how the sexes regulate their intake of nutrients when restricted to a single diet and when given dietary choice and how this affected expression of these important reproductive traits. Pheromone levels that improve male attractiveness, female clutch size and gestation time all peaked at a high daily intake of P:C in a 1:8 ratio. This is surprising because female insects typically require more P than males to maximize reproduction. The relatively low P requirement of females may reflect the action of cockroach endosymbionts that help recycle stored nitrogen for protein synthesis. When constrained to a single diet, both sexes prioritized regulating their daily intake of P over C, although this prioritization was stronger in females than males. When given the choice between diets, both sexes actively regulated their intake of nutrients at a 1:4.8 P:C ratio. The P:C ratio did not overlap exactly with the intake of nutrients that optimized reproductive trait expression. Despite this, cockroaches of both sexes that were given dietary choice generally improved the mean and reduced the variance in all reproductive traits we measured relative to animals fed a single diet from the diet choice pair. This pattern was not as strong when compared to the single best diet in our geometric array, suggesting that the relationship between nutrient balancing and reproduction is complex in this species.  相似文献   
189.
190.
Sexual conflict results in a diversity of sex‐specific adaptations, including chemical additions to ejaculates. Male decorated crickets (Gryllodes sigillatus) produce a gelatinous nuptial gift (the spermatophylax) that varies in size and free amino acid composition, which influences a female's willingness to fully consume this gift. Complete consumption of this gift maximizes sperm transfer through increased retention of the sperm‐containing ampulla, but hinders post‐copulatory mate choice. Here, we examine the effects of protein (P) and carbohydrate (C) intake on the weight and amino acid composition of the spermatophylax that describes its gustatory appeal to the female, as well as the ability of this gift to regulate sexual conflict via ampulla attachment time. Nutrient intake had similar effects on the expression of these traits with each maximized at a high intake of nutrients with a P : C ratio of 1 : 1.3. Under dietary choice, males actively regulated their nutrient intake but this regulation did not coincide with the peak of the nutritional landscape for any trait. Our results therefore demonstrate that a balanced intake of nutrients is central to regulating sexual conflict in G. sigillatus, but males are constrained from reaching the optima needed to bias the outcome of this conflict in their favour.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号