首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2623篇
  免费   336篇
  国内免费   2篇
  2021年   26篇
  2019年   28篇
  2017年   27篇
  2016年   33篇
  2015年   44篇
  2014年   74篇
  2013年   93篇
  2012年   109篇
  2011年   93篇
  2010年   82篇
  2009年   75篇
  2008年   107篇
  2007年   115篇
  2006年   99篇
  2005年   104篇
  2004年   111篇
  2003年   72篇
  2002年   87篇
  2001年   79篇
  2000年   79篇
  1999年   62篇
  1998年   52篇
  1997年   42篇
  1996年   33篇
  1995年   30篇
  1994年   30篇
  1993年   26篇
  1992年   65篇
  1991年   64篇
  1990年   56篇
  1989年   65篇
  1988年   51篇
  1987年   47篇
  1986年   40篇
  1985年   49篇
  1984年   44篇
  1983年   36篇
  1982年   32篇
  1981年   27篇
  1980年   27篇
  1979年   31篇
  1978年   27篇
  1977年   25篇
  1976年   35篇
  1975年   31篇
  1974年   26篇
  1973年   24篇
  1972年   39篇
  1969年   25篇
  1968年   24篇
排序方式: 共有2961条查询结果,搜索用时 31 毫秒
121.
122.
Summary An efrotomycin fermentation was characterized through physical, chemical and biochemical studies. Growth of the actinomycete,Nocardia lactamdurans occurred during the first 50 h of the fermentation cycle at the expense of glucose, protein, and triglycerides. The initiation of efrotomycin biosynthesis was observed when glucose dropped to a low concentration. Upon glucose depletion, cell growth ceased and a switch in the respiratory quotient occurred. Efrotomycin biosynthesis was supported by the utilization of soybean oil and starch. Analysis of triglyceride metabolism showed that no diglycerides or monoglycerides accumulated during the fermentation. The activity of extracellular enzymes (lipase, protease, and amylase) increase during the cell growth phase and decreased significantly after 150 h. The concentrations of DNA, tetrahydro-vitamin K2 (a membrane component), and free amino acids in the supernatant increased dramatically late in the fermentation cycle (225 h), indicating massive cell lysis. During this same time period, a reduction in cellular respiratory activity and efrotomycin biosynthesis were observed.  相似文献   
123.
Autoantibodies directed against the thyroid peroxidase (TPO), the thyroid microsomal antigen, are widely used to diagnose human autoimmune thyroid disease. A cloned 3.088 kb cDNA coding for the entire mature human TPO was isolated from a cDNA library derived from a pathological thyroid gland of a Graves' disease patient and used further to generate a so-called TPO epitope cDNA library in order to map linear autoantigenic epitopes involving a recombinant molecular biology approach. The TPO epitope cDNA library consisting of randomly fragmented cDNA sequences inserted in the expression vector pGEX-2T was expressed in Escherichia coli and screened with characterized anti-TPO autoantisera from Hashimoto's disease patients. All the sera were positively tested with a purified thyroid microsomal antigen fraction (TMA/TPO). Only about 1% of examined autoantisera were able to recognize bacterial expressed recombinant TPO representing sequential antigenic determinants. A corresponding autoantigenic epitope with 61 amino acids in length was located at the C-terminus of human TPO.  相似文献   
124.
125.
Milk xanthine oxidase (XO) has been prepared in a dehydrogenase form (XDH) by purifying the enzyme in the presence of 2.5 mM dithiothreitol. Unlike XO, which reacts rapidly only with oxygen and not with NAD, the XDH form of the enzyme reacts rapidly with NAD. XDH has a turnover number for the NAD-dependent conversion of xanthine to urate of 380 mol/min/mol at pH 7.5, 25 degrees C, with a Km = < or = 1 microM for xanthine and a Km = 7 microM for NAD, but has very little O2-dependent activity. There is evidence that the two forms of the enzyme have different flavin environments: XDH stabilizes the neutral form of the flavin semiquinone and XO does not. Further, XDH binds the artificial flavin 8-mercapto-FAD in its neutral form, shifting the pK of this flavin by 5 pH units, while XO binds 8-mercapto-FAD in its benzoquinoid anionic form. XDH can be converted back to the XO form by the addition of three to four equivalents of the disulfide-forming reagent 4,4'-dithiodipyridine, suggesting that, in the XDH form of the enzyme, disulfide bonds are broken; this may cause a conformational change which creates a binding site for NAD and changes the protein structure near the flavin.  相似文献   
126.
Low molecular weight phosphotyrosyl protein phosphatases of human placenta and human red cell were purified and sequenced by a combination of Edman degradation and tandem mass spectrometry. Screening of a human placental lambda gt11 cDNA library yielded overlapping cDNA clones coding for two distinct human cytoplasmic low molecular weight phosphotyrosyl protein phosphatases (HCPTPs). The two longest clones, designated HCPTP1-1 and HCPTP2-1, were found to have identical nucleotide sequences, with the exception of a 108-base pair segment in the middle of the open reading frame. Polymerase chain reaction studies with human genomic DNA suggest that the difference between HCPTP1-1 and HCPTP2-1 does not result from alternative RNA splicing. Studies with a human chromosome 2-specific library confirmed that these sequences are located on chromosome 2, which is known to be the location of red cell acid phosphatase locus ACP1. The coding sequences of HCPTP1-1 and HCPTP2-1 were placed downstream from a bacteriophage T7 promoter and the proteins were expressed in Escherichia coli. The resulting recombinant enzymes (designated HCPTP-A and HCPTP-B, respectively) showed molecular weights of 18,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and both of them exhibited immunoreactivity with antisera raised against authentic human placental and bovine heart enzymes. The expressed proteins were highly active towards the phosphatase substrates p-nitrophenyl phosphate, beta-naphthyl phosphate, and O-phospho-L-tyrosine, but not alpha-naphthyl phosphate, threonine phosphate, or O-phospho-L-serine. HCPTP-A and -B possessed effectively identical amino acid compositions, immunoreactivities, inhibition by formaldehyde, and kinetic properties when compared with two human red cell acid phosphatase isoenzymes. It is concluded that HCPTP-A and -B are the fast and slow forms of red cell acid phosphatase, respectively, and that this enzyme is not unique to the red cell but is instead expressed in all human tissues.  相似文献   
127.
Watson ED  Sertich PL  Hunt PR 《Theriogenology》1992,37(5):1075-1083
Follicular growth and ovulation were monitored in 18 horse mares during a control cycle and during a cycle in which the mares received a GnRH agonist, leuprolide acetate (LA; 200 or 400 mug), twice daily until ovulation. Prior to both of these cycles, follicular growth was suppressed using a 10-day estrogen-progesterone treatment regimen, with prostaglandin F-2alpha (10 mg) administered on Day 10. Four of the mares treated with LA remained anovulatory for at least 3 weeks after the end of treatment and were excluded from statistical analysis. The dosage of LA did not affect response. Treatment with LA significantly (P=0.0375) increased the percentage of large follicles per ovulation (i.e., follicles greater than 30 mm in diameter on the day on which the largest follicle reached 35 mm) and also increased (P=0.0539) the diameter of the second largest follicle. However LA did not significantly alter the number of ovulations. Mean daily concentrations of luteinizing hormone (LH) were not significantly different during treatment and control cycles. The LH in blood samples collected repeatedly on Day 19 after the start of estrogen-progesterone treatment did not show a difference in frequency or amplitude of pulses between treatment and control cycles. Mares were artificially inseminated during estrus and the embryos were recovered. Fewer embryos were recovered per ovulation from mares after treatment with LA (26%) than during the control cycle (64%). Results indicate that treatment with LA either suppressed follicular activity or induced multiple follicular growth.  相似文献   
128.
129.
The complete amino acid sequence of the 61-kDa calmodulin-dependent, cyclic nucleotide phosphodiesterase (CaM-PDE) from bovine brain has been determined. The native protein is a homodimer of N alpha-acetylated, 529-residue polypeptide chains, each of which has a calculated molecular weight of 60,755. The structural organization of this CaM-PDE has been investigated with use of limited proteolysis and synthetic peptide analogues. A site capable of interacting with CaM has been identified, and the position of the catalytic domain has been mapped. A fully active, CaM-independent fragment (Mr = 36,000), produced by limited tryptic cleavage in the absence of CaM, represents a functional catalytic domain. N-Terminal sequence and size indicate that this 36-kDa fragment is comprised of residues 136 to approximately 450 of the CaM-PDE. This catalytic domain encompasses a approximately 250 residue sequence that is conserved among PDE isozymes of diverse size, phylogeny, and function. CaM-PDE and its PDE homologues comprise a unique family of proteins, each having a catalytic domain that evolved from a common progenitor. A search of the sequence for potential CaM-binding sites revealed only one 15-residue segment with both a net positive charge and the ability to form an amphiphilic alpha-helix. Peptide analogues that include this amphiphilic segment were synthesized. Each was found to inhibit the CaM-dependent activation of the enzyme and to bind directly to CaM with high affinity in a calcium-dependent manner. This site is among the sequences cleaved from a 45-kDa chymotryptic fragment that has the complete catalytic domain but no longer binds CaM. These results indicate that residues located between position 23 and 41 of the native enzyme contribute significantly to the binding of CaM although the involvement of residues from additional sites is not excluded.  相似文献   
130.
Free radicals were generated at known rates in the aqueous phase (by means of 2,2'-azobis (2-amidinopropane) dihydrochloride [AAPH]) and in a membranous (lipid) phase (by means of 2,2'-azobis (2,4-dimethylvaleronitrile [AMVN]). A soluble protein (bovine serum albumin: BSA), and membranes of lysed mitochondria containing radioactively labeled monoamine oxidase (MAO), were exposed to the resultant radical fluxes. Antioxidants were added to the system, either in the aqueous phase (Trolox) or in a liposomal membrane phase (alpha-tocopherol). Protein damage was assessed as tryptophan oxidation and conformational changes in tryptophan fluorescence of the soluble protein, BSA, and as fragmentation of both BSA and monoamine oxidase. Radicals generated in the aqueous phase, by AAPH, were effective in damaging BSA and MAO. Radicals generated within the liposome membrane phase (by AMVN) were less effective against BSA than those deriving from AAPH. Liposomal AMVN radicals could damage MAO, present in a separate membranous phase, though again, less effectively than could AAPH-derived radicals. BSA could be protected by Trolox, the aqueous soluble antioxidant, but hardly by tocopherol itself. Damage to MAO was limited by Trolox, and also by the hydrophobic antioxidant, tocopherol. Damaging reactions due to radicals generated in a membrane phase were significantly accelerated when the membrane was peroxidizable (soybean phosphatidylcholine) rather than nonperoxidizable (saturated dimyristoyl phosphatidylcholine). Thus lipid radicals also played some role in protein damage in these systems. BSA was attacked similarly in the presence or absence of liposomes by AAPH. Correspondingly, BSA could inhibit the peroxidation of liposomes induced by AAPH and less efficiently that induced by AMVN.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号