全文获取类型
收费全文 | 81篇 |
免费 | 5篇 |
专业分类
86篇 |
出版年
2021年 | 1篇 |
2020年 | 2篇 |
2018年 | 1篇 |
2017年 | 2篇 |
2016年 | 3篇 |
2015年 | 3篇 |
2014年 | 3篇 |
2013年 | 3篇 |
2012年 | 3篇 |
2011年 | 8篇 |
2010年 | 1篇 |
2009年 | 3篇 |
2008年 | 1篇 |
2007年 | 3篇 |
2006年 | 4篇 |
2005年 | 6篇 |
2004年 | 3篇 |
2003年 | 1篇 |
2002年 | 1篇 |
2001年 | 3篇 |
2000年 | 1篇 |
1999年 | 3篇 |
1998年 | 2篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1990年 | 4篇 |
1989年 | 2篇 |
1987年 | 1篇 |
1986年 | 4篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1973年 | 1篇 |
1965年 | 1篇 |
1939年 | 1篇 |
排序方式: 共有86条查询结果,搜索用时 0 毫秒
41.
A decrease in environmental temperature leads to the synthesis of Delta5-unsaturated fatty acids in Bacillus subtilis by the fatty acid desaturase Des. Des is regulated by the two-component system DesKR. To understand the mechanism of cold signal perception and transduction by the membrane domain and the cytosolic domain of DesK, we expressed the cytosolic domain of DesK in trans under the control of a xylose-inducible promoter without the membrane domain. We performed growth experiments and a Northern blot analysis. Our results show that the kinase function of the cytosolic domain of DesK is temperature-independent, leading to a constitutive expression of the des gene. These findings support the conclusion that the membrane domain of DesK is the temperature-sensing element of the two-component system. 相似文献
42.
Energetics and Surface Properties of Pseudomonas putida DOT-T1E in a Two-Phase Fermentation System with 1-Decanol as Second Phase 下载免费PDF全文
Grit Neumann Sjef Cornelissen Frank van Breukelen Steffi Hunger Holger Lippold Norbert Loffhagen Lukas Y. Wick Hermann J. Heipieper 《Applied microbiology》2006,72(6):4232-4238
The solvent-tolerant strain Pseudomonas putida DOT-T1E was grown in batch fermentations in a 5-liter bioreactor in the presence and absence of 10% (vol/vol) of the organic solvent 1-decanol. The growth behavior and cellular energetics, such as the cellular ATP content and the energy charge, as well as the cell surface hydrophobicity and charge, were measured in cells growing in the presence and absence of 1-decanol. Although the cells growing in the presence of 1-decanol showed an about 10% reduced growth rate and a 48% reduced growth yield, no significant differences were measured either in the ATP and potassium contents or in the energy charge, indicating that the cells adapted completely at the levels of membrane permeability and energetics. Although the bacteria needed additional energy for adaptation to the presence of the solvent, they were able to maintain or activate electron transport phosphorylation, allowing homeostasis of the ATP level and energy charge in the presence of the solvent, at the price of a reduced growth yield. On the other hand, significantly enhanced cell hydrophobicities and more negative cell surface charges were observed in cells grown in the presence of 1-decanol. Both reactions occurred within about 10 min after the addition of the solvent and were significantly different after killing of the cells with toxic concentrations of HgCl2. This adaptation of the surface properties of the bacterium to the presence of solvents seems to be very similar to previously observed reactions on the level of lipopolysaccharides, with which bacteria adapt to environmental stresses, such as heat shock, antibiotics, or low oxygen content. The results give clear physiological indications that the process with P. putida DOT-T1E as the biocatalyst and 1-decanol as the solvent is a stable system for two-phase biotransformations that will allow the production of fine chemicals in economically sound amounts. 相似文献
43.
Hunger S Schmidt O Hilgarth M Horn MA Kolb S Conrad R Drake HL 《Applied and environmental microbiology》2011,77(11):3773-3785
Methanogenesis in wetlands is dependent on intermediary substrates derived from the degradation of biopolymers. Formate is one such substrate and is stimulatory to methanogenesis and acetogenesis in anoxic microcosms of soil from the fen Schlöppnerbrunnen. Formate dissimilation also yields CO2 as a potential secondary substrate. The objective of this study was to resolve potential differences between anaerobic formate- and CO2-utilizing prokaryotes of this fen by stable isotope probing. Anoxic soil microcosms were pulsed daily with low concentrations of [13C]formate or 13CO2 (i.e., [13C]bicarbonate). Taxa were evaluated by assessment of 16S rRNA genes, mcrA (encoding the alpha-subunit of methyl-coenzyme M reductase), and fhs (encoding formyltetrahydrofolate synthetase). Methanogens, acetogens, and formate-hydrogen lyase-containing taxa appeared to compete for formate. Genes affiliated with Methanocellaceae, Methanobacteriaceae, Acetobacteraceae, and Rhodospirillaceae were 13C enriched (i.e., labeled) in [13C]formate treatments, whereas genes affiliated with Methanosarcinaceae, Conexibacteraceae, and Solirubrobacteraceae were labeled in 13CO2 treatments. [13C]acetate was enriched in [13C]formate treatments, but labeling of known acetogenic taxa was not detected. However, several phylotypes were affiliated with acetogen-containing taxa (e.g., Sporomusa). Methanosaetaceae-affiliated methanogens appeared to participate in the consumption of acetate. Twelve and 58 family-level archaeal and bacterial 16S rRNA phylotypes, respectively, were detected, approximately half of which had no isolated representatives. Crenarchaeota constituted half of the detected archaeal 16S rRNA phylotypes. The results highlight the unresolved microbial diversity of the fen Schlöppnerbrunnen, suggest that differing taxa competed for the same substrate, and indicate that Methanocellaceae, Methanobacteriaceae, Methanosarcinaceae, and Methanosaetaceae were linked to the production of methane, but they do not clearly resolve the taxa responsible for the apparent conversion of formate to acetate. 相似文献
44.
M. I. Stevens S. A. Hunger S. F. K. Hills C. E. C. Gemmill 《Plant Systematics and Evolution》2007,263(3-4):191-201
Previous studies of Antarctic mosses employing RAPDs have reported extraordinarily high levels of genetic variation, even
within a single clump of moss. This is unexpected given their extreme isolation in Antarctica and lack of sexual reproduction.
We offer an alternative explanation: that unusually elevated levels of genetic variability are artefacts from contamination
of a number of biota known to be naturally associated with Antarctic mosses. We utilized sequence variation of nrITS and RAPDs
to further investigate the effect of naturally occurring contaminants on estimates of genetic variation of mosses. Our results
indicate that these ``phantom hitch-hiker' contaminants hinder attempts to accurately and reliably estimate levels of genetic
variation by non-specific PCR-based approaches. Furthermore, screening samples via amplification of nrITS failed to identify
all contaminated samples, hence we caution against relying solely on ``quick' screening methods and suggest that suspect
samples be carefully examined for contamination. 相似文献
45.
Immunochemical identity of peroxisomal enoyl-CoA hydratase with the peroxisome-proliferation -associated 80,000 mol wt polypeptide in rat liver 总被引:5,自引:1,他引:5 下载免费PDF全文
Peroxisome proliferators, which induce proliferation of hepatic peroxisomes, have been shown previously to cause a marked increase in an 80,000 mol wt polypeptide predominantly in the light mitochondrial and microsomal fractions of liver of rodents. We now present evidence to show that this hepatic peroxisome-proliferation-associated polypeptide, referred to as polypeptide PPA-80, is immunochemically identical with the multifunctional peroxisome protein displaying heat-labile enoyl-CoA hydratase activity. This conclusion is based on the following observations: (a) the purified polypeptide PPA-80 and the heat- labile enoyl-CoA hydratase from livers of rats treated with the peroxisome proliferators Wy-14,643 {[4-chloro-6(2,3-xylidino)-2-pyrimidinylthio]acetic acid} exhibit identical minimum molecular weights of approximately 80,000 on SDS polyacrylamide gel electrophoresis; (b) these two proteins are immunochemically identical on the basis of ouchterlony double diffusion, immunotitration, rocket immunoelectrophoresis, and crossed immunoelectrophoresis analysis; and (c) the immunoprecipitates formed by antibodies to polypeptide PPA-80 when dissociated on a sephadex G-200 column yield enoyl-CoA hydratase activity. Whether the polypeptide PPA-80 exhibits the activity of other enzyme(s) of the peroxisomal β-oxidation system such as fatty acyl-CoA oxidase activity or displays immunochemical identity with such enzymes remains to be determined. The availability of antibodies to polypeptide PPA-80 and enoyl-CoA hydratase facilitated immunofluorescent and immunocytochemical localization of the polypeptide PPA- 80 and enoyl-CoA hydratase in the rat liver. The indirect immunofluorescent studies with these antibodies provided direct visual evidence for the marked induction of polypeptide PPA-80 and enoyl-CoA hydratase in the livers of rats treated with Wy-14,643. The present studies also provide immunocytochemical evidence for the localization of polypeptide PPA- 80 and the heat-labile enoyl-CoA hydratase in the peroxisome, but not in the mitochondria, of hepatic parenchymal cells. These studies, therefore, provide morphological evidence for the existence of fatty acyl-CoA oxidizing system in peroxisomes. An increase of polypeptide PPA-80 on SDS polyacrylamide gel electrophoretic analysis of the subcellular fractions of liver of rodents treated with lipid-lowering drugs should serve as a reliable and sensitive indicator of enhanced peroxisomal β- oxidation system. 相似文献
46.
47.
Abbatiello SE Pan YX Zhou M Wayne AS Veenstra TD Hunger SP Kilberg MS Eyler JR Richards NG Conrads TP 《Journal of Proteomics》2008,71(1):61-70
The appearance of asparaginase-resistant acute lymphoblastic leukemia (ALL) in transformed cell lines has been correlated with increased expression of asparagine synthetase (ASNS). Recent measurements using mRNA-based assays have raised doubts, however, as to the importance of ASNS protein in the cellular mechanisms that confer drug resistance upon the leukemic cells. Studies aimed at determining the concentration of ASNS protein in human leukemias are therefore needed to resolve this issue. A mass spectrometry (MS)-based procedure is presented for the direct quantification of ASNS protein concentration in complex sample mixtures. This assay is able to distinguish samples from transformed cell lines that express ASNS over a wide dynamic range of concentration. Importantly, this method directly detects ASNS protein, the functional entity that may be synthesizing sufficient asparagine to render leukemia cells resistant to asparaginase-treatment. We also report the successful use of this MS method, which has lower limits of detection and quantification of 30 and 100 attomoles, respectively, for the first direct measurements of ASNS protein concentrations in four patient blast samples. 相似文献
48.
49.
BACKGROUND: Benzo(a)pyrene (BaP), anthracene (ANTH) and chrysene (CHRY) are polynuclear aromatic hydrocarbons (PAHs) implicated in renal toxicity and carcinogenesis. These PAHs elicit cell type-specific effects that help predict toxicity outcomes in vitro and in vivo. While BaP and ANTH selectively injure glomerular mesangial cells, and CHRY targets cortico-tubular epithelial cells, binary or ternary mixtures of these hydrocarbons markedly reduce the overall cytotoxic potential of individual hydrocarbons. METHODS: To study the biochemical basis of these antagonistic interactions, renal glomerular mesangial cells were challenged with BaP alone (0.03 - 30 microM) or in the presence of ANTH (3 microM) or CHRY (3 microM) for 24 hr. Total RNA and protein will be harvested for Northern analysis and measurements of aryl hydrocarbon hydroxylase (AHH) and ethoxyresorufin-O-deethylase (EROD) activity, respectively, to evaluate cytochrome P450 mRNA and protein inducibility. Cellular hydrocarbon uptake and metabolic profiles of PAHs were analyzed by high performance liquid chromatography (HPLC). RESULTS: Combined hydrocarbon treatments did not influence the cellular uptake of individual hydrocarbons. ANTH or CHRY strongly repressed BaP-inducible cytochrome P450 mRNA and protein expression, and markedly inhibited oxidative BaP metabolism. CONCLUSION: These findings indicate that antagonistic interactions among nephrocarcinogenic PAHs involve altered expression of cytochrome P450s that modulate bioactivation profiles and nephrotoxic/ nephrocarcinogenic potential. 相似文献
50.