首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20998篇
  免费   1691篇
  国内免费   1721篇
  24410篇
  2024年   55篇
  2023年   315篇
  2022年   712篇
  2021年   1152篇
  2020年   765篇
  2019年   975篇
  2018年   912篇
  2017年   614篇
  2016年   911篇
  2015年   1339篇
  2014年   1517篇
  2013年   1578篇
  2012年   1933篇
  2011年   1697篇
  2010年   996篇
  2009年   920篇
  2008年   1088篇
  2007年   905篇
  2006年   828篇
  2005年   649篇
  2004年   508篇
  2003年   448篇
  2002年   371篇
  2001年   323篇
  2000年   321篇
  1999年   324篇
  1998年   208篇
  1997年   242篇
  1996年   191篇
  1995年   189篇
  1994年   162篇
  1993年   129篇
  1992年   181篇
  1991年   143篇
  1990年   146篇
  1989年   98篇
  1988年   90篇
  1987年   87篇
  1986年   63篇
  1985年   65篇
  1984年   43篇
  1983年   47篇
  1982年   21篇
  1981年   16篇
  1980年   14篇
  1979年   12篇
  1978年   10篇
  1969年   9篇
  1968年   8篇
  1965年   16篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
101.
There is evidence that extracellular adenosine can attenuate cardiac hypertrophy, but the mechanism by which this occurs is not clear. Here we investigated the role of adenosine receptors and adenosine metabolism in attenuation of cardiomyocyte hypertrophy. Phenylephrine (PE) caused hypertrophy of neonatal rat cardiomyocytes with increases of cell surface area, protein synthesis, and atrial natriuretic peptide (ANP) expression. These responses were attenuated by 5 μM 2-chloroadenosine (CADO; adenosine deaminase resistant adenosine analog) or 10 μM adenosine. While antagonism of adenosine receptors partially blocked the reduction of ANP expression produced by CADO, it did not restore cell size or protein synthesis. In support of a role for intracellular adenosine metabolism in regulating hypertrophy, the adenosine kinase (AK) inhibitors iodotubercidin and ABT-702 completely reversed the attenuation of cell size, protein synthesis, and expression of ANP by CADO or ADO. Examination of PE-induced phosphosignaling pathways revealed that CADO treatment did not reduce AKT(Ser??3) phosphorylation but did attenuate sustained phosphorylation of Raf(Ser33?) (24-48 h), mTOR(Ser2???) (24-48 h), p70S6k(Thr3??) (2.5-48 h), and ERK(Thr2?2/Tyr2??) (48 h). Inhibition of AK restored activation of these enzymes in the presence of CADO. Using dominant negative and constitutively active Raf adenoviruses, we found that Raf activation is necessary and sufficient for PE-induced mTORC1 signaling and cardiomyocyte hypertrophy. CADO treatment still blocked p70S6k(Thr3??) phosphorylation and hypertrophy downstream of constitutively active Raf, however, despite a high level phosphorylation of ERK(Thr202/Tyr204) and AKT(Ser??3). Reduction of Raf-induced p70S6k(Thr3??) phosphorylation and hypertrophy by CADO was reversed by inhibiting AK. Together, these results identify AK as an important mediator of adenosine attenuation of cardiomyocyte hypertrophy, which acts, at least in part, through inhibition of Raf signaling to mTOR/p70S6k.  相似文献   
102.
Radiation‐induced intestinal injury (RIII) is a common complication after radiation therapy in patients with pelvic, abdominal, or retroperitoneal tumours. Recently, in the model of DSS (Dextran Sulfate Sodium Salt) ‐induced intestinal inflammatory injury, it has been found in the study that transgenic mice expressing hVDR in IEC (Intestinal Epithelial Cell) manifest highly anti‐injury properties in colitis, suggesting that activated VDR in the epithelial cells of intestine may inhibit colitis by protecting the mucosal epithelial barrier. In this study, we investigated the effect of the expression and regulation of VDR on the protection of RIII, and the radiosensitivity in vitro experiments, and explored the initial mechanism of VDR in regulating radiosensitivity of IEC. As a result, we found that the expression of VDR in intestinal tissues and cells in mice can be induced by ionizing radiation. VDR agonists are able to prolong the average survival time of mice after radiation and reduce the radiation‐induced intestinal injury. For lack of vitamin D, the radiosensitivity of intestinal epithelial cells in mice increased, which can be reduced by VDR activation. Ensuing VDR activation, the radiation‐induced intestinal stem cells damage is decreased, and the regeneration and differentiation of intestinal stem cells is promoted as well. Finally, on the basis of sequencing analysis, we validated and found that VDR may target the HIF/PDK1 pathway to mitigate RIII. We concluded that agonism or upregulation of VDR expression attenuates radiation‐induced intestinal damage in mice and promotes the repair of epithelial damage in intestinal stem cells.  相似文献   
103.
NF-kappaB is critical for determining cellular sensitivity to apoptotic stimuli by regulating both mitochondrial and death receptor apoptotic pathways. The endoplasmic reticulum (ER) emerges as a new apoptotic signaling initiator. However, the mechanism by which ER stress activates NF-kappaB and its role in regulation of ER stress-induced cell death are largely unclear. Here, we report that, in response to ER stress, IKK forms a complex with IRE1alpha through the adapter protein TRAF2. ER stress-induced NF-kappaB activation is impaired in IRE1alpha knockdown cells and IRE1alpha(-/-) MEFs. We found, however, that inhibiting NF-kappaB significantly decreased ER stress-induced cell death in a caspase-8-dependent manner. Gene expression analysis revealed that ER stress-induced expression of tumor necrosis factor alpha (TNF-alpha) was IRE1alpha and NF-kappaB dependent. Blocking TNF receptor 1 signaling significantly inhibited ER stress-induced cell death. Further studies suggest that ER stress induces down-regulation of TRAF2 expression, which impairs TNF-alpha-induced activation of NF-kappaB and c-Jun N-terminal kinase and turns TNF-alpha from a weak to a powerful apoptosis inducer. Thus, ER stress induces two signals, namely TNF-alpha induction and TRAF2 down-regulation. They work in concert to amplify ER-initiated apoptotic signaling through the membrane death receptor.  相似文献   
104.

Background

Recent experimental studies provide evidence indicating that manipulation of the mononuclear phagocyte phenotype could be a feasible approach to alter the severity and persistence of pulmonary injury and fibrosis. Mineralocorticoid receptor (MR) has been reported as a target to regulate macrophage polarization. The present work was designed to investigate the therapeutic potential of MR antagonism in bleomycin-induced acute lung injury and fibrosis.

Methodology/Principal Findings

We first demonstrated the expression of MR in magnetic bead-purified Ly6G-/CD11b+ circulating monocytes and in alveolar macrophages harvested in bronchoalveolar lavage fluid (BALF) from C57BL/6 mice. Then, a pharmacological intervention study using spironolactone (20mg/kg/day by oral gavage) revealed that MR antagonism led to decreased inflammatory cell infiltration, cytokine production (downregulated monocyte chemoattractant protein-1, transforming growth factor β1, and interleukin-1β at mRNA and protein levels) and collagen deposition (decreased lung total hydroxyproline content and collagen positive area by Masson’ trichrome staining) in bleomycin treated (2.5mg/kg, via oropharyngeal instillation) male C57BL/6 mice. Moreover, serial flow cytometry analysis in blood, BALF and enzymatically digested lung tissue, revealed that spironolactone could partially inhibit bleomycin-induced circulating Ly6Chi monocyte expansion, and reduce alternative activation (F4/80+CD11c+CD206+) of mononuclear phagocyte in alveoli, whereas the phenotype of interstitial macrophage (F4/80+CD11c-) remained unaffected by spironolactone during investigation.

Conclusions/Significance

The present work provides the experimental evidence that spironolactone could attenuate bleomycin-induced acute pulmonary injury and fibrosis, partially via inhibition of MR-mediated circulating monocyte and alveolar macrophage phenotype switching.  相似文献   
105.
Powdery mildew disease caused by Blumeria graminis f. sp. tritici (Bgt) is an economically important disease in wheat worldwide. The identification of germplasms resistant to the disease can not only facilitate the breeding of resistant cultivars, but can also broaden the diversity of resistance genes. The Mexican M53 is a synthetic hexaploid wheat line developed at the International Maize and Wheat Improvement Center (CIMMYT) from the cross between Triticum durum and Aegilops tauschii249. Infection of M53 with 15 different pathogen races revealed that the resistance in M53 was race-dependent and effective against the majority of the tested Bgt races, including the race 15 predominant in the Beijing wheat growing area. Inoculation of the parents of M53 with the race 15 demonstrated that M53 and Ae. tauschii249 were resistant, whereas T. durum was susceptible. The inoculation of three segregating F2 populations developed from the crosses between M53 and three susceptible Chinese wheat cultivars with the race 15 showed that the resistant gene in M53 segregated in a single dominant manner. Amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers were used to map the gene in a segregating F2 population consisting of 213 lines developed from the cross Wan7107 × M53. Two closely linked AFLP markers, Apm109 and Apm161, were identified to flank the gene with genetic distances of 1.0 cM and 3.0 cM, respectively. The recognized gene was assigned to the long arm of chromosome 5D as determined by three linked SSR markers, Xwmc289b, Xgwm583, and Xgwm292, and by the physical mapping of Apm109 using Chinese Spring nullisomic–tetrasomic and ditelosomic stocks. The resistance gene identified in M53, temporarily designated as Pm-M53, could be used in local wheat-breeding programs to improve powdery mildew resistance.  相似文献   
106.
How insulin binds to the insulin receptor has long been a subject of speculation. Although the structure of the free hormone has been extensively characterized, a variety of evidence suggests that a conformational change occurs upon receptor binding. Here, we employ chiral mutagenesis, comparison of corresponding d and l amino acid substitutions, to investigate a possible switch in the B-chain. To investigate the interrelation of structure, function, and stability, isomeric analogs have been synthesized in which an invariant glycine in a beta-turn (Gly(B8)) is replaced by d- or l-Ser. The d substitution enhances stability (DeltaDeltaG(u) 0.9 kcal/mol) but impairs receptor binding by 100-fold; by contrast, the l substitution markedly impairs stability (DeltaDeltaG(u) -3.0 kcal/mol) with only 2-fold reduction in receptor binding. Although the isomeric structures each retain a native-like overall fold, the l-Ser(B8) analog exhibits fewer helix-related and long range nuclear Overhauser effects than does the d-Ser(B8) analog or native monomer. Evidence for enhanced conformational fluctuations in the unstable analog is provided by its attenuated CD spectrum. The inverse relationship between stereospecific stabilization and receptor binding strongly suggests that the B7-B10 beta-turn changes conformation on receptor binding.  相似文献   
107.
N-(2-pyridylmethyl)-2-hydroxiymethyl-1-pyrrolidinyl-4-(3-chloro-4-methoxy-benzylamino)-5-pyrimidine-carboxamide (NHPPC) is a new potential of type 5 phosphodiesterase (PDE5) inhibitors, synthesized from the avanafil analogue for the treatment of erectile dysfunction. The targets of this article were to assess plasma protein binding, liver microsomal metabolic stability, inhibition and induction on cytochrome P450 isozymes and the pharmacokinetics of NHPPC. Equilibrium dialysis technique was applied to determine Plasma protein binding (PPB) and NHPPC was evaluated in male Sprague–Dawley rats and Beagle dogs in vivo pharmacokinetic. The NHPPC was highly bound to plasma proteins in rats, dogs and human tested and the mean values for PPB rate were 96.2%, 99.6% and 99.4%, respectively. After in vitro liver microsomes incubated for 60?min, the percent remaining of NHPPC was 42.8%, 0.8% and 42.0% in rats, dogs and human, respectively. In vitro intrinsic clearance was found to be 0.0233, 0.1204 and 0.0214 mL/min/mg protein in rat, dog and human liver microsomes of NHPPC, respectively. NHPPC showed no significant inhibitory effects on major CYP450 enzymes, and had no significant induction potential on CYP1A2 and CYP3A4. Following oral administration in rats and dogs, tmax was 6 and 0.5?h, respectively. The clearance for NHPPC was 1.19 and 1.46?L/h/kg in rats and dogs, respectively. And absolute bioavailability in rat and dog were approximately 34.5% and 53.1%, respectively. These results showed that NHPPC has a good development prospect.  相似文献   
108.

Background

Previous association studies examining the relationship between the APOC1 polymorphism and susceptibility to Alzheimer’s disease (AD) have shown conflicting results, and it is not clear if an APOC1 variant acts as a genetic risk factor in AD etiology across multiple populations.

Methods

To confirm the risk association between APOC1 and AD, we designed a case-control study and also performed a meta-analysis of previously published studies.

Results

Seventy-nine patients with AD and one hundred fifty-six unrelated controls were included in case-control study. No association was found between the variation of APOC1 and AD in stage 1 of our study. However, our meta-analysis pooled a total of 2092 AD patients and 2685 controls. The APOC1 rs11568822 polymorphism was associated with increased AD risk in Caucasians, Asians and Caribbean Hispanics, but not in African Americans. APOE ε4 carriers harboring the APOC1 insertion allele, were more prevalent in AD patients than controls (χ2 = 119.46, OR = 2.79, 95% CI = 2.31–3.36, P<0.01).

Conclusions

The APOC1 insertion allele, in combination with APOE ε4, likely serves as a potential risk factor for developing AD.  相似文献   
109.
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a zoonotic pathogen capable of causing severe respiratory disease in humans. Although dromedary camels are considered as a major reservoir host, the MERS-CoV infection dynamics in camels are not fully understood. Through surveillance in Pakistan, nasal (n = 776) and serum (n = 1050)samples were collected from camels between November 2015 and February 2018. Samples were collected from animal markets, free-roaming herds and abattoirs. An in-house ELISA was developed to detect IgG against MERS-CoV. A total of 794 camels were found seropositive for MERS-CoV. Prevalence increased with the age and the highest seroprevalence was recorded in camels aged [ 10 years (81.37%) followed by those aged 3.1–10 years (78.65%) and B 3 years (58.19%).Higher prevalence was observed in female (78.13%) as compared to male (70.70%). Of the camel nasal swabs, 22 were found to be positive by RT-qPCR though with high Ct values. Moreover, 2,409 human serum samples were also collected from four provinces of Pakistan during 2016–2017. Among the sampled population, 840 humans were camel herders.Although we found a high rate of MERS-CoV antibody positive dromedaries (75.62%) in Pakistan, no neutralizing antibodies were detected in humans with and without contact to camels.  相似文献   
110.
Hong MH  Chou YC  Wu YC  Tsai KN  Hu CP  Jeng KS  Chen ML  Chang C 《PloS one》2012,7(1):e30360
Several studies have demonstrated that cytokine-mediated noncytopathic suppression of hepatitis B virus (HBV) replication may provide an alternative therapeutic strategy for the treatment of chronic hepatitis B infection. In our previous study, we showed that transforming growth factor-beta1 (TGF-β1) could effectively suppress HBV replication at physiological concentrations. Here, we provide more evidence that TGF-β1 specifically diminishes HBV core promoter activity, which subsequently results in a reduction in the level of viral pregenomic RNA (pgRNA), core protein (HBc), nucleocapsid, and consequently suppresses HBV replication. The hepatocyte nuclear factor 4alpha (HNF-4α) binding element(s) within the HBV core promoter region was characterized to be responsive for the inhibitory effect of TGF-β1 on HBV regulation. Furthermore, we found that TGF-β1 treatment significantly repressed HNF-4α expression at both mRNA and protein levels. We demonstrated that RNAi-mediated depletion of HNF-4α was sufficient to reduce HBc synthesis as TGF-β1 did. Prevention of HNF-4α degradation by treating with proteasome inhibitor MG132 also prevented the inhibitory effect of TGF-β1. Finally, we confirmed that HBV replication could be rescued by ectopic expression of HNF-4α in TGF-β1-treated cells. Our data clarify the mechanism by which TGF-β1 suppresses HBV replication, primarily through modulating the expression of HNF-4α gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号