首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2701篇
  免费   260篇
  国内免费   10篇
  2971篇
  2024年   6篇
  2023年   11篇
  2022年   33篇
  2021年   53篇
  2020年   38篇
  2019年   53篇
  2018年   57篇
  2017年   42篇
  2016年   71篇
  2015年   143篇
  2014年   172篇
  2013年   204篇
  2012年   228篇
  2011年   223篇
  2010年   139篇
  2009年   138篇
  2008年   150篇
  2007年   141篇
  2006年   142篇
  2005年   122篇
  2004年   119篇
  2003年   77篇
  2002年   93篇
  2001年   63篇
  2000年   58篇
  1999年   52篇
  1998年   34篇
  1997年   12篇
  1996年   13篇
  1995年   9篇
  1994年   8篇
  1993年   7篇
  1992年   29篇
  1991年   23篇
  1990年   17篇
  1989年   19篇
  1988年   21篇
  1987年   13篇
  1986年   15篇
  1985年   11篇
  1984年   10篇
  1983年   12篇
  1982年   10篇
  1981年   6篇
  1980年   7篇
  1979年   10篇
  1978年   6篇
  1975年   7篇
  1974年   9篇
  1972年   5篇
排序方式: 共有2971条查询结果,搜索用时 15 毫秒
101.
The cytosolic NADP+-dependent malic enzyme (c-NADP-ME) has a dimer-dimer quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In this study, the urea-induced unfolding process of the c-NADP-ME interface mutants was monitored using fluorescence and circular dichroism spectroscopy, analytical ultracentrifugation and enzyme activities. Here, we demonstrate the differential protein stability between dimer and tetramer interface interactions of human c-NADP-ME. Our data clearly demonstrate that the protein stability of c-NADP-ME is affected predominantly by disruptions at the dimer interface rather than at the tetramer interface. First, during thermal stability experiments, the melting temperatures of the wild-type and tetramer interface mutants are 8–10°C higher than those of the dimer interface mutants. Second, during urea denaturation experiments, the thermodynamic parameters of the wild-type and tetramer interface mutants are almost identical. However, for the dimer interface mutants, the first transition of the urea unfolding curves shift towards a lower urea concentration, and the unfolding intermediate exist at a lower urea concentration. Third, for tetrameric WT c-NADP-ME, the enzyme is first dissociated from a tetramer to dimers before the 2 M urea treatment, and the dimers then dissociated into monomers before the 2.5 M urea treatment. With a dimeric tetramer interface mutant (H142A/D568A), the dimer completely dissociated into monomers after a 2.5 M urea treatment, while for a dimeric dimer interface mutant (H51A/D90A), the dimer completely dissociated into monomers after a 1.5 M urea treatment, indicating that the interactions of c-NADP-ME at the dimer interface are truly stronger than at the tetramer interface. Thus, this study provides a reasonable explanation for why malic enzymes need to assemble as a dimer of dimers.  相似文献   
102.
Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows that Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.  相似文献   
103.

Background

Concomitant supplementation of vitamins C and E during pregnancy has been reportedly associated with low birth weight, the premature rupture of membranes and fetal loss or perinatal death in women at risk for preeclampsia; however, the cause is unknown. We surmise that hypoxia-reoxygenation (HR) within the intervillous space due to abnormal placentation is the mechanism and hypothesize that concomitant administration of aforementioned vitamin antioxidants detrimentally affects trophoblast cells during HR.

Methodology/Principal Findings

Using villous explants, concomitant administration of 50 µM of vitamins C and E was observed to reduce apoptotic and autophagic changes in the trophoblast layer at normoxia (8% oxygen) but to cause more prominent apoptosis and autophagy during HR. Furthermore, increased levels of Bcl-2 and Bcl-xL in association with a decrease in the autophagy-related protein LC3-II were noted in cytotrophoblastic cells treated with vitamins C and E under standard culture conditions. In contrast, vitamin treatment decreased Bcl-2 and Bcl-xL as well as increased mitochondrial Bak and cytosolic LC3-II in cytotrophoblasts subjected to HR.

Conclusions/Significance

Our results indicate that concomitant administration of vitamins C and E has differential effects on the changes of apoptosis, autophagy and the expression of Bcl-2 family of proteins in the trophoblasts between normoxia and HR. These changes may probably lead to the impairment of placental function and suboptimal growth of the fetus.  相似文献   
104.
Although HCO3 is known to be required for early embryo development, its exact role remains elusive. Here we report that HCO3 acts as an environmental cue in regulating miR-125b expression through CFTR-mediated influx during preimplantation embryo development. The results show that the effect of HCO3 on preimplantation embryo development can be suppressed by interfering the function of a HCO3-conducting channel, CFTR, by a specific inhibitor or gene knockout. Removal of extracellular HCO3 or inhibition of CFTR reduces miR-125b expression in 2 cell-stage mouse embryos. Knockdown of miR-125b mimics the effect of HCO3 removal and CFTR inhibition, while injection of miR-125b precursor reverses it. Downregulation of miR-125b upregulates p53 cascade in both human and mouse embryos. The activation of miR-125b is shown to be mediated by sAC/PKA-dependent nuclear shuttling of NF-κB. These results have revealed a critical role of CFTR in signal transduction linking the environmental HCO3 to activation of miR-125b during preimplantation embryo development and indicated the importance of ion channels in regulation of miRNAs.  相似文献   
105.
The MNK (Menkes disease protein; ATP7A) is a major copper- transporting P-type ATPase involved in the delivery of copper to cuproenzymes in the secretory pathway and the efflux of excess copper from extrahepatic tissues. Mutations in the MNK (ATP7A) gene result in Menkes disease, a fatal neurodegenerative copper deficiency disorder. Currently, detailed biochemical and biophysical analyses of MNK to better understand its mechanisms of copper transport are not possible due to the lack of purified MNK in an active form. To address this issue, we expressed human MNK with an N-terminal Glu-Glu tag in Sf9 [Spodoptera frugiperda (fall armyworm) 9] insect cells and purified it by antibody affinity chromatography followed by size-exclusion chromatography in the presence of the non-ionic detergent DDM (n-dodecyl beta-D-maltopyranoside). Formation of the classical vanadate-sensitive phosphoenzyme by purified MNK was activated by Cu(I) [EC50=0.7 microM; h (Hill coefficient) was 4.6]. Furthermore, we report the first measurement of Cu(I)-dependent ATPase activity of MNK (K0.5=0.6 microM; h=5.0). The purified MNK demonstrated active ATP-dependent vectorial 64Cu transport when reconstituted into soya-bean asolectin liposomes. Together, these data demonstrated that Cu(I) interacts with MNK in a co-operative manner and with high affinity in the sub-micromolar range. The present study provides the first biochemical characterization of a purified full-length mammalian copper-transporting P-type ATPase associated with a human disease.  相似文献   
106.
Hung A  Yarovsky I 《Biochemistry》2011,50(9):1492-1504
Interactions with membrane lipids can exert dramatic functional consequences on gap junction proteins. Recent experimental work has highlighted the importance of anionic lipids and cholesterol in facilitating channel activity. In this work, we have employed a coarse-grained molecular model in conjunction with molecular dynamics (MD) simulations to study the interactions between a connexin 26 (Cx26) hemichannel and a number of lipid species, including palmitoyloleoylphosphatidylcholine (POPC), anionic palmitoyloleoylphosphatidic acid (POPA), and cholesterol, in order to identify sites at the protein interface which may exhibit preferential, specific binding to these lipids, as well as determine the characteristics of these interactions. We have also employed an atomistic model of Cx26 embedded in a mixed PA/PC bilayer as a comparison and to elucidate further lipid-protein interactions. Our simulation results suggest enrichment of interfacial PA at the intracellular leaflet at high bulk PA concentrations. PC can form tight binding interactions with the hemichannel, particularly at intersubunit crevices (classical nonannular sites). In mixed bilayers, however, POPA competes with POPC for these sites, displacing the latter in some cases. While the residues responsible for interactions with PC and PA are similar, the latter exhibits a unique property of being capable of forming stable hydrophilic contacts with multiple residues spanning two different adjacent subunits at both leaflets of the bilayer, as opposed to POPC which can only do so at the extracellular side. These results suggest that POPA may be essential to channel function by acting as an intersubunit lipid bridge. Additionally, we propose that the compositional enrichment of POPA at the Cx26 interface may serve important roles in voltage gating. Simulation of a mixed POPC:cholesterol bilayer suggests that the hemichannel enhances the transbilayer mobility of vicinal cholesterols, increasing the likelihood of site-hopping and interleaflet flip-flop transitions.  相似文献   
107.
In China alone, an estimated 30 million people are at risk of schistosomiasis, caused by the Schistosoma japonicum parasite. Disease has re-emerged in several regions that had previously attained transmission control, reinforcing the need for active surveillance. The environmental stage of the parasite is known to exhibit high spatial and temporal variability, and current detection techniques rely on a sentinel mouse method which has serious limitations in obtaining data in both time and space. Here we describe a real-time PCR assay to quantitatively detect S. japonicum cercariae in laboratory samples and in natural water that has been spiked with known numbers of S. japonicum. Multiple primers were designed and assessed, and the best performing set, along with a TaqMan probe, was used to quantify S. japonicum. The resulting assay was selective, with no amplification detected for Schistosoma mansoni, Schistosoma haematobium, avian schistosomes nor organisms present in non-endemic surface water samples. Repeated samples containing various concentrations of S. japonicum cercariae showed that the real-time PCR method had a strong linear correlation (R2 = 0.921) with light microscopy counts, and the detection limit was below the DNA equivalent of half of one cercaria. Various cercarial concentrations spiked in 1 liter of natural water followed by a filtration process produced positive detection from 93% of samples analyzed. The real-time PCR method performed well quantifying the relative concentrations of various spiked samples, although the absolute concentration estimates exhibited high variance across replicated samples. Overall, the method has the potential to be applied to environmental water samples to produce a rapid, reliable assay for cercarial location in endemic areas.  相似文献   
108.
A novel endogenous β-1,4-endoglucanase (EG) gene belonging to the glycosyl hydrolase family 9 (GHF 9) that is distributed throughout the digestive tract of the cricket Teleogryllus emma was cloned and characterized. This gene, named TeEG-I, consists of eight exons encoding 453 amino acid residues and exists as a single copy in the T. emma genome. TeEG-I possesses all the features, including signature motifs and catalytic domains, of GHF 9 members, sharing high levels of identity with the termite, Mastotermes darwiniensis (64% protein sequence identity), and the cockroach, Panesthia cribrata (62%), GHF 9 cellulases. Recombinant TeEG-I, which is expressed as a 47-kDa polypeptide in baculovirus-infected insect Sf9 cells, showed an optimal pH and temperature of pH 5.0 and 40 °C. The Km and Vmax values for digestion of carboxymethyl cellulose were 5.4 mg/ml and 3118.4 U/mg, respectively. Northern and Western blot analyses revealed that TeEG-I is present throughout the digestive tract, which correlated with the TeEG-I distribution and cellulase activity in the digestive tract as assayed by immunofluorescence staining and enzyme activity assay, respectively. These results indicate that TeEG-I is distributed throughout the entire digestive tract of T. emma, suggesting a functional role of endogenous TeEG-I in a sequential cellulose digestion process throughout the T. emma digestion tract.  相似文献   
109.
110.
N Pripuzova  R Wang  S Tsai  B Li  GC Hung  RG Ptak  SC Lo 《PloS one》2012,7(8):e43246

Background

Real-time PCR array for rapid detection of multiple viral pathogens should be highly useful in cases where the sample volume and the time of testing are limited, i.e. in the eligibility testing of tissue and organ donors.

Findings

We developed a real-time PCR array capable of simultaneously detecting eight human viral pathogens: human immunodeficiency virus types 1 and 2 (HIV-1 and -2), hepatitis B virus (HBV), hepatitis C virus (HCV), human T-cell leukemia virus-1 and -2 (HTLV-1 and -2), vaccinia virus (VACV) and West Nile virus (WNV). One hundred twenty (120) primers were designed using a combination of bioinformatics approaches, and, after experimental testing, 24 primer sets targeting eight viral pathogens were selected to set up the array with SYBR Green chemistry. The specificity and sensitivity of the virus-specific primer sets selected for the array were evaluated using analytical panels with known amounts of viruses spiked into human plasma. The array detected: 10 genome equivalents (geq)/ml of HIV-2 and HCV, 50 geq of HIV-1 (subtype B), HBV (genotype A) and WNV. It detected 100–1,000 geq/ml of plasma of HIV-1 subtypes (A – G), group N and CRF (AE and AG) isolates. Further evaluation with a panel consisting of 28 HIV-1 and HIV-2 clinical isolates revealed no cross-reactivity of HIV-1 or HIV-2 specific primers with another type of HIV. All 28 viral isolates were identified with specific primer sets targeting the most conserved genome areas. The PCR array correctly identified viral infections in a panel of 17 previously quantified clinical plasma samples positive for HIV-1, HCV or HBV at as low as several geq per PCR reaction.

Conclusions

The viral array described here demonstrated adequate performance in the testing of donors’ clinical samples. Further improvement in its sensitivity for the broad spectrum of HIV-1 subtypes is under development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号