首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6813篇
  免费   495篇
  国内免费   6篇
  2024年   9篇
  2023年   26篇
  2022年   84篇
  2021年   144篇
  2020年   117篇
  2019年   140篇
  2018年   231篇
  2017年   185篇
  2016年   281篇
  2015年   457篇
  2014年   465篇
  2013年   509篇
  2012年   663篇
  2011年   584篇
  2010年   365篇
  2009年   329篇
  2008年   435篇
  2007年   432篇
  2006年   341篇
  2005年   304篇
  2004年   300篇
  2003年   265篇
  2002年   198篇
  2001年   110篇
  2000年   92篇
  1999年   77篇
  1998年   33篇
  1997年   29篇
  1996年   17篇
  1995年   15篇
  1994年   8篇
  1993年   7篇
  1992年   9篇
  1991年   8篇
  1990年   8篇
  1989年   5篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1976年   2篇
  1975年   1篇
  1971年   2篇
  1957年   1篇
排序方式: 共有7314条查询结果,搜索用时 15 毫秒
111.
Photosynthetic complexes in the thylakoid membrane of plant leaves primarily function as energy-harvesting machinery during the growth period. However, leaves undergo developmental and functional transitions along aging and, at the senescence stage, these complexes become major sources for nutrients to be remobilized to other organs such as developing seeds. Here, we investigated age-dependent changes in the functions and compositions of photosynthetic complexes during natural leaf senescence in Arabidopsis thaliana. We found that Chl a/b ratios decreased during the natural leaf senescence along with decrease of the total chlorophyll content. The photosynthetic parameters measured by the chlorophyll fluorescence, photochemical efficiency (F v/F m) of photosystem II, non-photochemical quenching, and the electron transfer rate, showed a differential decline in the senescing part of the leaves. The CO2 assimilation rate and the activity of PSI activity measured from whole senescing leaves remained relatively intact until 28 days of leaf age but declined sharply thereafter. Examination of the behaviors of the individual components in the photosynthetic complex showed that the components on the whole are decreased, but again showed differential decline during leaf senescence. Notably, D1, a PSII reaction center protein, was almost not present but PsaA/B, a PSI reaction center protein is still remained at the senescence stage. Taken together, our results indicate that the compositions and structures of the photosynthetic complexes are differentially utilized at different stages of leaf, but the most dramatic change was observed at the senescence stage, possibly to comply with the physiological states of the senescence process.  相似文献   
112.
Mice were exposed to deoxynivalenol (DON) via drinking water at a concentration of 2 mg/L for 36 days. On day 8 of treatment, inactivated porcine parvovirus vaccine (PPV) was injected intraperitoneally. The relative and absolute weight of the spleen was significantly decreased in the DON-treated group (DON). Antibody titers to parvovirus in serum were 47.9?±?2.4 in the vaccination group (Vac), but 15.2?±?6.5 in the group treated with DON and vaccine (DON?+?Vac). The IgA and IgG was not different in the DON, Vac an,d DON?+?Vac groups. IgM was significantly lower only in the DON?+?Vac group. However IgE was significantly increased in the Vac and DON?+?Vac group, but no change was observed between the Vac and DON?+?Vac groups. The concentrations of IL-2, IL-4, GM-CSF, MCP-1 and Rantes in serum, and IL-1α in mesenteric lymph node and MIP-1β in spleen were significantly increased by DON treatment compared to control. The concentrations of IL-2, IL-5, IL-6, IL-9, IL-12, IL-13 and Rantes in thymus, of IL-2 in spleen, and of IL-1α, IL-1β, IL-3, IL-5, IL-10, IL-17, G-CSF, GM-CSF and MCP-1 in mesenteric lymph nodes were significantly decreased in mice compared to those in the Vac group, while concentrations of IL-1α, IL-2, IL-9, IL-13,G-CSF, GM-CSF, IFN-γ, MCP-1, MIP-1α and TNF-α were significantly increased in serum compared to the Vac group. In conclusion, the results presented here indicate that exposure to DON at 2.0 mg/L via drinking water can disrupt the immune response in vaccinated mice by modulating cytokines and chemokines involved in their immune response to infectious disease.  相似文献   
113.
114.
115.
Apoptosis signal-regulating kinase-1 (ASK1), an early signaling element in the cell death pathway, has been suggested to participate in the pathology of neurodegenerative diseases, which may be associated with environmental factors that impact the diseases. Although it is not entirely elucidated, 3-nitropropionic acid (3-NP) provokes mitochondrial dysfunction and selectively forms striatal lesions similar to those found in Huntington’s disease. The current study investigated whether ASK1 is involved in striatal pathology following chronic systemic infusion of 3-NP. The results show that ASK1 acts as a primary mediator of there active oxygen species (ROS) cell death signal cascade in the 3-NP-damaged striatal region by disrupting the positive feedback cycle. In 3-NP-infused striatal lesions, ROS increased ASK1. Superoxide dismutase transgenic (SOD-tg) mice reduced ASK1by scavenging ROS, and reduction of ASK1leads to a reduction in cell death. However, ASK1 down-regulation in 3-NP infusion mice also decreased striatal cell death without scavenging ROS. In contrast decreasing cell death by si-ASK1 treatment along with 3-NP in both SOD tg and wild-type mice (wt), cell death rebounded when ASK1 peptide was added to SOD tg mice. The present study suggests that ROS-inducing ASK1 may be an important step in the pathogenesis of 3-NP infused striatal lesions in murine brains.  相似文献   
116.
Metastasis is major cause of malignant cancer-associated mortality. Fucoxanthin has effect on various pharmacological activities including anti-cancer activity. However, the inhibitory effect of fucoxanthin on cancer metastasis remains unclear. Here, we show that fucoxanthin isolated from brown alga Saccharina japonica has anti-metastatic activity. To check anti-metastatic properties of fucoxanthin, in vitro models including assays for invasion, migration, actin fiber organization and cancer cell–endothelial cell interaction were used. Fucoxanthin inhibited the expression and secretion of MMP-9 which plays a critical role in tumor invasion and migration, and also suppressed invasion of highly metastatic B16-F10 melanoma cells as evidenced by transwell invasion assay. In addition, fucoxanthin diminished the expressions of the cell surface glycoprotein CD44 and CXC chemokine receptor-4 (CXCR4) which play roles in migration, invasion and cancer–endothelial cell adhesion. Fucoxanthin markedly suppressed cell migration in wound healing assay and inhibited actin fiber formation. The adhesion of B16-F10 melanoma cells to the endothelial cells was significantly inhibited by fucoxanthin. Moreover, in experimental lung metastasis in vivo assay, fucoxanthin resulted in significant reduction of tumor nodules. Taken together, we demonstrate, for the first time, that fucoxanthin suppresses metastasis of highly metastatic B16-F10 melanoma cells in vitro and in vivo.  相似文献   
117.
118.
Focal adhesion kinase (FAK) consists of an N-terminal band 4.1; ezrin, radixin, moesin (FERM) domain; tyrosine kinase domain; and C-terminal FA targeting domain. Here we show that ectopically expressed FERM is largely located in the cytosolic fraction under quiescent conditions. We further found that this ectopically expressed FERM domain aggravates endothelial cell apoptosis triggered by 100 μM resveratrol, whereas FERM had no effect on apoptosis induced by TNF-α. We determined that resveratrol at low doses (<20 μM) promotes phosphorylation (S1177) of eNOS via an AMPK-dependent pathway. The presence of the FERM domain blocked this resveratrol-stimulated eNOS phosphorylation and NO production. Thus, the pro-apoptotic activity of cytosolic FERM domain is at least partially mediated by down-regulation of NO, a critical cell survival factor. Consistently, we found that the apoptosis induced by cytosolic FERM in the presence of resveratrol was reversed by an NO donor, SNAP. In conclusion, FERM located in the cytosolic fraction plays a pivotal role in aggravating cell apoptosis through diminishing NO production.  相似文献   
119.
In Saccharomyces cerevisiae, the Yap family of basic leucine zipper (bZip) proteins contains eight members. The Yap family proteins are implicated in a variety of stress responses; among these proteins, Yap1 acts as a major regulator of oxidative stress responses. However, the functional roles of the remaining Yap family members are poorly understood. To elucidate the function of Yap2, we mined candidate target genes of Yap2 by proteomic analysis. Among the identified genes, FRM2 was previously identified as a target gene of Yap2, which confirmed the validity of our screening method. YNL134C and YDL124W were also identified as candidate Yap2 target genes. These genes were upregulated in strains overexpressing Yap2 and possess Yap2 target sequences in their promoter regions. Furthermore, chromatin immunoprecipitation assays showed that YNL134C and YDL124W have Yap2 binding motif. These data will help to elucidate the functional role of Yap2.  相似文献   
120.
Four new lanostane triterpenes, butyl lucidenate P (1), butyl lucidenate D2 (2), butyl lucidenate E2 (3) and butyl lucidenate Q (4) along with 11 known compounds (515) were isolated from the fruiting bodies of Ganoderma lucidum. Their chemical structures were established mainly by 1D and 2D NMR techniques and mass spectrometry. Their anti-inflammatory activity was evaluated against LPS-induced NO production in macrophage RAW 264.7 cells. Compounds 1, 3, 4, 9, 10 and 15 showed inhibitory potency with IC50 values of 7.4, 6.4, 4.3, 9.4, 9.2 and 4.5 μM, respectively. Compounds 1, 3 and 15 dose-dependently reduced the LPS-induced iNOS expressions. Preincubation of cell with 1, 3 and 15 significantly suppressed LPS-induced expression of COX-2 protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号