首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   779篇
  免费   62篇
  国内免费   2篇
  2022年   12篇
  2021年   6篇
  2020年   6篇
  2019年   8篇
  2018年   7篇
  2017年   8篇
  2016年   14篇
  2015年   25篇
  2014年   32篇
  2013年   36篇
  2012年   39篇
  2011年   35篇
  2010年   21篇
  2009年   31篇
  2008年   32篇
  2007年   26篇
  2006年   34篇
  2005年   30篇
  2004年   20篇
  2003年   17篇
  2002年   26篇
  2001年   21篇
  2000年   24篇
  1999年   18篇
  1998年   17篇
  1997年   10篇
  1994年   6篇
  1992年   5篇
  1991年   10篇
  1990年   8篇
  1989年   8篇
  1988年   13篇
  1987年   9篇
  1986年   8篇
  1985年   6篇
  1984年   13篇
  1983年   7篇
  1981年   14篇
  1979年   12篇
  1978年   8篇
  1977年   7篇
  1976年   9篇
  1975年   11篇
  1974年   6篇
  1973年   12篇
  1972年   10篇
  1971年   7篇
  1967年   5篇
  1965年   6篇
  1901年   6篇
排序方式: 共有843条查询结果,搜索用时 484 毫秒
221.
A potent antitumor CD4+ T-helper cell immune response is created by inducing tumor cells in vivo to a MHC class II+/Iiphenotype. MHC class II and Ii molecules were induced in tumor cells in situ following tumor injection of a plasmid containing the gene for the MHC class II transactivator (CIITA). Ii protein was suppressed by the antisense effect of an Ii-reverse gene construct (Ii-RGC) in the same or another co-injected plasmid. The MHC class II+/Iiphenotype of the tumor cells was confirmed by FACS analysis of cells transfected in vitro and by immunostaining of tumor nodules transfected by injections in vivo. Subcutaneous Renca tumors in BALB/c mice were treated by intratumoral injection with CIITA and Ii-RGC, in combination with a subtherapeutic dose of IL-2, to up-regulate the activation of T cells. Significant tumor shrinkage and decrease in rates of progression of established Renca tumors were seen in the groups injected with Ii-RGC, compared with groups in which only IL-2 plus empty plasmid controls were injected. Our method provides an effective immunotherapy warranting further development for human cancers.Abbreviations CIITA MHC class II transactivator - DMRIE 1,2-dimeristyloxypropyl-3-dimethyl-hydroxy ethyl ammonium bromide/cholesterol - FCS fetal calf serum - RGC reverse gene constructThis research was funded in part by NCI grants R43 CA85100 and R43CA 89856.  相似文献   
222.
Dietary supplementation with the peroxisome proliferator-activated receptor alpha (PPAR alpha) ligand WY 14,643 gave rise to a 4- to 5-fold increase in the expression of mRNA for the ATP binding cassette transporter A1 (ABCA1) in the intestine of normal mice. There was no effect in the intestine of PPAR alpha-null mice. Consumption of a high-cholesterol diet also increased intestinal ABCA1 expression. The effects of WY 14,643 and the high-cholesterol diet were not additive. WY 14,643 feeding reduced intestinal absorption of cholesterol in the normal mice, irrespective of the dietary cholesterol concentration, and this resulted in lower diet-derived cholesterol and cholesteryl ester concentrations in plasma and liver. At each concentration of dietary cholesterol, there was a similar significant inverse correlation between intestinal ABCA1 mRNA content and the amount of cholesterol absorbed. The fibrate-induced changes in the intestines of the normal mice were accompanied by an increased concentration of the mRNA encoding the sterol-regulatory element binding protein-1c gene (SREBP-1c), a known target gene for the oxysterol receptor liver X receptor alpha (LXR alpha). There was a correlation between intestinal ABCA1 mRNA and SREBP-1c mRNA contents, but not between SREBP-1c mRNA content and cholesterol absorption. These results suggest that PPAR alpha influences cholesterol absorption through modulating ABCA1 activity in the intestine by a mechanism involving LXR alpha.  相似文献   
223.
Alpha-, beta-, and gamma-melanocyte stimulating hormones (MSHs) are melanotropin peptides that are derived from the ACTH/beta-endorphin prohormone proopiomelanocortin (POMC). They have been highly conserved through evolutionary development, although their functions in mammals have remained obscure. The identification in the last decade of a family of five membrane-spanning melanocortin receptors (MC-Rs), for which the melanotropins are the natural ligands, has permitted the characterization of a number of important actions of these peptides, although the physiological function(s) of gamma-MSH have remained elusive. Much evidence indicates that gamma-MSH stimulates sympathetic outflow and raises blood pressure through a central mechanism. However, this review focuses on newer cardiovascular and renal actions of the peptide, acting in most cases through the MC3-R. In rodents, a high-sodium diet (HSD) increases the pituitary abundance of POMC mRNA and of gamma-MSH content and results in a doubling of plasma gamma-MSH concentration. The peptide is natriuretic and acts through renal MC3-Rs, which are also upregulated by the HSD. Thus the system appears designed to participate in the integrated response to dietary sodium excess. Genetic or pharmacologic induction of gamma-MSH deficiency results in marked salt-sensitive hypertension that is corrected by the administration of the peptide, probably through a central site of action. Deletion of the MC3-R also produces salt-sensitive hypertension, which, however, is not corrected by infusion of the hormone. These observations in aggregate suggest the operation of a hormonal system important in blood pressure control and in the regulation of sodium excretion. The relationship of these two actions to each other and the significance of this system in humans are important questions for future research.  相似文献   
224.
Stimulation of T lymphocytes with the ligand for the CXCR4 chemokine receptor stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12), results in prolonged activation of the extracellular signal-regulated kinases (ERK) ERK1 and ERK2. Because SDF-1alpha is unique among several chemokines in its ability to stimulate prolonged ERK activation, this pathway is thought to mediate special functions of SDF-1alpha that are not shared with other chemokines. However, the molecular mechanisms of this response are poorly understood. In this study we show that SDF-1alpha stimulation of prolonged ERK activation in Jurkat T cells requires both the ZAP-70 tyrosine kinase and the Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76) scaffold protein. This pathway involves ZAP-70-dependent tyrosine phosphorylation of SLP-76 at one or more of its tyrosines, 113, 128, and 145. Because TCR activates ERK via SLP-76-mediated activation of the linker of activated T cells (LAT) scaffold protein, we examined the role of LAT in SDF-1alpha-mediated ERK activation. However, neither the SLP-76 proline-rich domain that links to GADS and LAT, nor LAT, itself are required for SDF-1alpha to stimulate SLP-76 tyrosine phosphorylation or to activate ERK. Together, our results describe the distinct mechanism by which SDF-1alpha stimulates prolonged ERK activation in T cells and indicate that this pathway is specific for cells expressing both ZAP-70 and SLP-76.  相似文献   
225.
A "futile cycle" induced by thiazolidinediones in human adipose tissue?   总被引:3,自引:0,他引:3  
Tan GD  Debard C  Tiraby C  Humphreys SM  Frayn KN  Langin D  Vidal H  Karpe F 《Nature medicine》2003,9(7):811-2; author reply 812
  相似文献   
226.
The stay-green phenotype results from a naturally occurring mutation in which senescent leaves retain their chlorophyll and the associated apoprotein, LHCPII. Protection of this protein pool could deliver grass with enhanced protein content and could decrease the extent of protein degradation by plant proteases in the rumen. This would enhance the efficiency of protein utilization in livestock to the benefit of the environment. Field plots of stay-green and wild-type Lolium perenne were defoliated at intervals to simulate grazing. There were variations in foliar protein content and proteolysis throughout the year, but no significant differences between genotypes when material was analysed fresh or after it was cut and dried to simulate hay-making, which possibly induced senescence. In a subsequent experiment with stay-green and wild-type L temulentum, increased protein retention and decreased protein degradability were observed in stay-green leaves that were allowed to senescence naturally and extensively on the plant. That there is no difference between the two L. perenne genotypes suggests that as a field crop in grazed pastures the stay-green genotype would not confer a nutritional advantage in terms of protein degradability. It is possible that grazing promotes a high proportion of non-senescent to senescent leaf material within the sward and thus any advantage conferred by the stay-green phenotype would be effectively masked by an abundance of mature foliage. It is suggested that the stay-green trait would be of benefit in areas where agricultural practice permits extensive natural senescence to occur.  相似文献   
227.
The end products of the phenylpropanoid pathway play important roles in plant structure and development, as well as in plant defense mechanisms against biotic and abiotic stresses. From a human perspective, phenylpropanoid pathway-derived metabolites influence both human health and the potential utility of plants in agricultural contexts. The last known enzyme of the phenylpropanoid pathway that has not been characterized is p-coumarate 3-hydroxylase (C3H). By screening for plants that fail to accumulate soluble fluorescent phenylpropanoid secondary metabolites, we have identified a number of Arabidopsis mutants that display a reduced epidermal fluorescence (ref) phenotype. We have now shown that the ref8 mutant is defective in the gene encoding C3H. Phenotypic characterization of the ref8 mutant has revealed that the lack of C3H activity in the mutant leads to diverse changes in phenylpropanoid metabolism. The ref8 mutant accumulates p-coumarate esters in place of the sinapoylmalate found in wild-type plants. The mutant also deposits a lignin formed primarily from p-coumaryl alcohol, a monomer that is at best a minor component in the lignin of other plants. Finally, the mutant displays developmental defects and is subject to fungal attack, suggesting that phenylpropanoid pathway products downstream of REF8 may be required for normal plant development and disease resistance.  相似文献   
228.
The spawning and early embryogenesis of the hemichordate, Ptychodera flava, in Hawaii are described in detail and illustrated with photographs of living material. Natural spawning in the evenings of early December was induced by a shift of seawater temperature from about 22 degrees C to about 26 degrees C. The fertilized egg divides equally and slowly at first, reaching 8 cells at about 5 hr after insemination at room temperature (20-24 degrees C). Divisions then appear to become slightly unequal and by 9 hr the embryo has divided into about 100 cells. The blastocoel forms during cleavage as an irregular space that, when viewed from the side, tends to appear oblate and ultimately appear crescent-shaped as the vegetal plate thickens into the blastocoel. The archenteron forms at about 18 hr as a cleft beginning at the vegetal pole and extending into the vegetal plate. As development proceeds, the embryo expands and by 24 hr forms a typical deuterostome gastrula with an outer sphere of ectoderm and a inner tube of endoderm connected at the blastopore. An out-pocketing of the gut appears at the tip of the archenteron over the next 4 hr to form the protocoel which will become the proboscis coelom. Approaching 40 hr the gut becomes asymmetric and over the next few hr contacts the ectoderm to form a mouth. Hatching occurs during this time at about 45 hr of development. Morphogenesis continues to produce an early tornaria larva by about 60 hr.  相似文献   
229.
Maize scutellum slices incubated in water utilized sucrose at a maximum rate of 0.12,μmol/min per g fr. wt of slices. When slices were incubated in DNP, there was a three-fold increase in the rate of sucrose utilization. Sucrose breakdown in higher plants can be achieved by pathways starting with either invertase or sucrose synthase (SS). Invertase activity in scutellum homogenates was found only in the cell wall fraction, indicating that SS was responsible for sucrose breakdown in vivo. SS in crude scutellum extracts broke down sucrose to fructose and UDPG at 0.39,μmol/min per g fresh wt of slices. The UDPG formed was not converted to UDP + glucose, UMP + glucose-1-P, UDP + glucose-1-P or broken down by any other means by the crude extract in the absence of PPi. In the presence of PPi, UDPG was broken down by UDPG pyrophosphorylase which had a maximum activity of 26 μmol/min per g fr. wt of slices. Levels of PPi in the scutellum could not be measured using the UDPG pyrophosphorylase: phosphoglucomutase: glucose-6-P dehydrogenase assay because they were too low relative to glucose-6-P which interferes in the assay. An active inorganic pyrophosphatase was present in the scutellum extract which could prevent the accumulation of PPi in the cytoplasm. ATP pyrophosphohydrolase, which hydrolyses ATP to AMP and PPi, was found in the soluble portion of the scutellum extract. The enzyme activity was increased by fructose-2,6-bisP and Ca2+. In the presence of both activators, enzyme activity was 1.1 μmol/min per g fr. wt of slices, a rate sufficient to supply PPi for the breakdown of UDPG. These results indicate that sucrose breakdown in maize scutellum cells occurs via the SS: UDPG pyrophosphorylase pathway.  相似文献   
230.
We describe a novel immobilization technique to investigate interactions between immobilized gangliosides (GD3, GM1, and GM2) and their respective antibodies, antibody fragments, or binding partners using an optical biosensor. Immobilization was performed by direct injection onto a carboxymethyldextran sensor chip and did not require derivatization of the sensor surface or the ganglioside. The ganglioside appeared to bind to the sensor surface by hydrophobic interaction, leaving the carbohydrate epitope available for antibody or, in the case of GM1, cholera toxin binding. The carboxyl group of the dextran chains on the sensor surface did not appear to be involved in the immobilization as evidenced by equivalent levels of immobilization following conversion of the carboxyl groups into acyl amino esters, but rather the dextran layer provided a hydrophilic coverage of the sensor chip which was essential to prevent nonspecific binding. This technique gave better reactivity and specificity for anti- ganglioside monoclonal antibodies (anti-GD3: KM871, KM641, R24; and anti-GM2: KM966) than immobilization by hydrophobic interaction onto a gold sensor surface or photoactivated cross-linking onto carboxymethydextran. This rapid immobilization procedure has facilitated detailed kinetic analysis of ganglioside/antibody interactions, with the surface remaining viable for a large number of cycles (>125). Kinetic constants were determined from the biosensor data using linear regression, nonlinear least squares and equilibrium analysis. The values of kd, ka, and KAobtained by nonlinear analysis (KAKM871 = 1.05, KM641 = 1.66, R24 = 0.14, and KM966 = 0.65 x 10(7) M- 1) were essentially independent of concentration and showed good agreement with data obtained by other analytical methods.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号