首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   805篇
  免费   88篇
  2021年   15篇
  2017年   10篇
  2016年   10篇
  2015年   22篇
  2014年   15篇
  2013年   35篇
  2012年   29篇
  2011年   32篇
  2010年   32篇
  2009年   21篇
  2008年   32篇
  2007年   42篇
  2006年   20篇
  2005年   27篇
  2004年   23篇
  2003年   28篇
  2002年   28篇
  2001年   27篇
  2000年   21篇
  1999年   18篇
  1998年   21篇
  1997年   9篇
  1995年   9篇
  1994年   7篇
  1993年   11篇
  1992年   13篇
  1991年   13篇
  1990年   13篇
  1989年   12篇
  1988年   19篇
  1987年   19篇
  1986年   9篇
  1985年   10篇
  1984年   15篇
  1983年   11篇
  1982年   7篇
  1981年   9篇
  1980年   7篇
  1979年   10篇
  1978年   9篇
  1977年   10篇
  1976年   9篇
  1975年   9篇
  1974年   9篇
  1973年   11篇
  1972年   11篇
  1970年   7篇
  1969年   15篇
  1968年   12篇
  1967年   10篇
排序方式: 共有893条查询结果,搜索用时 15 毫秒
161.
Female germ cells are essential for organogenesis of the ovary; without them, ovarian follicles do not form and functional and structural characteristics of the ovary are lost. We and others showed previously that when either Wnt4 or β-catenin was inactivated in the fetal ovary, female germ cells underwent degeneration. In this study, we set out to understand whether these two factors belong to the same pathway and how they maintain female germ cell survival. We found that activation of β-catenin in somatic cells in the Wnt4 knockout ovary restored germ cell numbers, placing β-catenin downstream of WNT4. In the absence of Wnt4 or β-catenin, female germ cells entered meiosis properly; however, they underwent apoptosis afterwards. Activin βB (Inhbb), a subunit of activins, was upregulated in the Wnt4 and β-catenin knockout ovaries, suggesting that Inhbb could be the cause for the loss of female germ cells, which are positive for activin receptors. Indeed, removal of Inhbb in the Wnt4 knockout ovaries prevented female germ cells from undergoing degeneration. We conclude that WNT4 maintains female germ cell survival by inhibiting Inhbb expression via β-catenin in the somatic cells. Maintenance of female germ cells hinge upon a delicate balance between positive (WNT4 and β-catenin) and negative (activin βB) regulators derived from the somatic cells in the fetal ovary.  相似文献   
162.
Disturbed coral reefs are often dominated by dense mat- or canopy-forming assemblages of macroalgae. This study investigated how such dense macroalgal assemblages change the chemical and physical microenvironment for understorey corals, and how the altered environmental conditions affect the physiological performance of corals. Field measurements were conducted on macroalgal-dominated inshore reefs in the Great Barrier Reef in quadrats with macroalgal biomass ranging from 235 to 1029 g DW m−2 dry weight. Underneath mat-forming assemblages, the mean concentration of dissolved oxygen was reduced by 26% and irradiance by 96% compared with conditions above the mat, while concentrations of dissolved organic carbon and soluble reactive phosphorous increased by 26% and 267%, respectively. The difference was significant but less pronounced under canopy-forming assemblages. Dissolved oxygen declined and dissolved inorganic carbon and alkalinity increased with increasing algal biomass underneath mat-forming but not under canopy-forming assemblages. The responses of corals to conditions similar to those found underneath algal assemblages were investigated in an aquarium experiment. Coral nubbins of the species Acropora millepora showed reduced photosynthetic yields and increased RNA/DNA ratios when exposed to conditions simulating those underneath assemblages (pre-incubating seawater with macroalgae, and shading). The magnitude of these stress responses increased with increasing proportion of pre-incubated algal water. Our study shows that mat-forming and, to a lesser extent, canopy-forming macroalgal assemblages alter the physical and chemical microenvironment sufficiently to directly and detrimentally affect the metabolism of corals, potentially impeding reef recovery from algal to coral-dominated states after disturbance. Macroalgal dominance on coral reefs therefore simultaneously represents a consequence and cause of coral reef degradation.  相似文献   
163.
Archaeological assemblages often lack the complete long bones needed to estimate stature and body mass. The most accurate estimates of body mass and stature are produced using femoral head diameter and femur length. Foot bones including the first metatarsal preserve relatively well in a range of archaeological contexts. In this article we present regression equations using the first metatarsal to estimate femoral head diameter, femoral length, and body mass in a diverse human sample. The skeletal sample comprised 87 individuals (Andamanese, Australasians, Africans, Native Americans, and British). Results show that all first metatarsal measurements correlate moderately to highly (r = 0.62-0.91) with femoral head diameter and length. The proximal articular dorsoplantar diameter is the best single measurement to predict both femoral dimensions. Percent standard errors of the estimate are below 5%. Equations using two metatarsal measurements show a small increase in accuracy. Direct estimations of body mass (calculated from measured femoral head diameter using previously published equations) have an error of just over 7%. No direct stature estimation equations were derived due to the varied linear body proportions represented in the sample. The equations were tested on a sample of 35 individuals from Christ Church Spitalfields. Percentage differences in estimated and measured femoral head diameter and length were less than 1%. This study demonstrates that it is feasible to use the first metatarsal in the estimation of body mass and stature. The equations presented here are particularly useful for assemblages where the long bones are either missing or fragmented, and enable estimation of these fundamental population parameters in poorly preserved assemblages.  相似文献   
164.
Organically raised swine had high fecal populations of chlortetracycline (CTC)-resistant (growing at 64 μg CTC/ml) Escherichia coli, Megasphaera elsdenii, and anaerobic bacteria. By comparison, CTC-resistant bacteria in feral swine feces were over 1,000-fold fewer and exhibited lower taxonomic diversity.  相似文献   
165.
Growing vulture populations represent increasing hazards to civil and military aircraft. To assess vulture flight behavior and activity patterns at the Marine Corps Air Station in Beaufort, South Carolina, we equipped 11 black vultures (Coragyps atratus) and 11 turkey vultures (Cathartes aura) with solar-powered Global Positioning System (GPS) satellite transmitters during a 2-year study (1 Oct 2006–30 Sep 2008). Turkey vultures had larger seasonal home ranges than did black vultures, and 2 turkey vultures made round-trips to Florida. Black vultures consistently spent less time in flight (8.4%) than did turkey vultures (18.9%), and black vultures flew at higher altitudes than did turkey vultures in all seasons except summer when altitudinal distributions (above ground level) did not differ. Although we recorded maximum altitudes of 1,578 m for black vultures and 1,378 for turkey vultures, most flights were low altitude. A matrix of vulture flight altitude versus time of day revealed that >60% of vulture flight activity occurred from 4 hr to 9 hr after sunrise at altitudes below 200 m. Continuation of aggressive harassment coupled with flexible training schedules to avoid times and altitudes of high vulture activity will decrease hazards to aircraft posed by these birds. © 2011 The Wildlife Society.  相似文献   
166.
167.
Advances in vascular tissue engineering have been tremendous over the past 15 years, yet there remains a need to optimize current constructs to achieve vessels having true growth potential. Toward this end, it has been suggested that computational models may help hasten this process by enabling time-efficient parametric studies that can reduce the experimental search space. In this paper, we present a first generation computational model for describing the in vivo development of a tissue engineered vein from an implanted polymeric scaffold. The model was motivated by our recent data on the evolution of mechanical properties and microstructural composition over 24 weeks in a mouse inferior vena cava interposition graft. It is shown that these data can be captured well by including both an early inflammatory-mediated and a subsequent mechano-mediated production of extracellular matrix. There remains a pressing need, however, for more data to inform the development of next generation models, particularly the precise transition from the inflammatory to the mechanobiological dominated production of matrix having functional capability.  相似文献   
168.
We used a murine model to assess the evolving biomechanical properties of tissue engineered vascular grafts (TEVGs) implanted in the arterial circulation. The initial polymeric tubular scaffold was fabricated from poly(lactic acid)(PLA) and coated with a 50:50 copolymer of poly(caprolactone) and poly(lactic acid)(P[PC/LA]). Following seeding with syngeneic bone marrow derived mononuclear cells, TEVGs (n=50) were implanted as aortic interposition grafts in wild-type mice and monitored serially using ultrasound. A custom biaxial mechanical testing device was used to quantify the in vitro circumferential and axial mechanical properties of grafts explanted at 3 or 7 months. At both times, TEVGs were much stiffer than native tissue in both directions. Repeated mechanical testing of some TEVGs treated with elastase or collagenase suggested that elastin did not contribute significantly to the overall stiffness whereas collagen did contribute. Traditional histology and immunostaining revealed smooth muscle cell layers, significant collagen deposition, and increasing elastin production in addition to considerable scaffold at both 3 and 7 months, which likely dominated the high stiffness seen in mechanical testing. These results suggest that PLA has inadequate in vivo degradation, which impairs cell-mediated development of vascular neotissue having properties closer to native arteries. Assessing contributions of individual components, such as elastin and collagen, to the developing neovessel is needed to guide computational modeling that may help to optimize the design of the TEVG.  相似文献   
169.
We have investigated the effects of intermolecular disulfide crosslinking and temperature-dependent insolubilization of nuclear proteins in vitro on the association of the polyoma large T antigen with the nuclear matrix in polyomavirus-infected mouse 3T6 cells. Nuclear matrices, prepared from polyomavirus-infected 3T6 cells by sequential extraction of isolated nuclei with 1% Triton X-100 (Triton wash), DNase I, and 2 M NaCl (high salt extract) at 4 degrees C, represented 18% of total nuclear protein. Incubation of nuclei with 1 mM sodium tetrathionate (NaTT) to induce disulfide crosslinks or at 37 degrees C to induce temperature-dependent insolubilization prior to extraction, transferred an additional 9-18% of the nuclear protein from the high salt extract to the nuclear matrix. This additional protein represented primarily an increased recovery of the same nuclear protein subset present in nuclear matrices prepared from untreated nuclei. Major constituents of chromatin including histones, hnRNP core proteins, and 98% of nuclear DNA were removed in the high salt extract following either incubation. Polyoma large T antigen was quantified in subcellular fractions by immunoblotting with rat anti-T ascites. Approximately 60-70% of the T antigen was retained in nuclei isolated in isotonic sucrose buffer at pH 7.2. Most (greater than 95%) of the T antigen retained in untreated nuclei was extracted by DNase-high salt treatment. Incubation at 37 degrees C or with NaTT transferred most (greater than 95%) of the T antigen to the nuclear matrix. T antigen solubilized from NaTT-treated matrices with 1% SDS sedimented on sucrose gradients as a large (50-S) complex. These complexes, isolated by immunoprecipitation with anti-T sera, were dissociated by reduction with 2-mercaptoethanol, and SDS-PAGE analysis revealed that T antigen was crosslinked in stoichiometric amounts to several host proteins: 150, 129, 72, and 70 kDa. These host proteins were not present in anti-T immunoprecipitates of solubilized nuclear matrices prepared from iodoacetamide-treated cells. Our results suggest that the majority of polyomavirus large T antigen in infected cells is localized to a specific subnuclear domain which is distinct from the bulk chromatin and is closely associated with the nuclear matrix.  相似文献   
170.
Recent studies have renewed interest in the effects of perivascular tethering on vascular mechanics, particularly growth and remodeling. We quantified effects of axial and circumferential tethering on rabbit pial arterioles from the ventral occipital lobe of the brain. The homeostatic axial pre-stretch, which is influenced by perivascular tethering, was measured in situ to be 1.24±0.04. Using a cannulated microvessel preparation, wall mechanics were then quantified in vitro for isolated arterioles at low (1.10) or normal (1.24) values of axial stretch and for tethered arterioles having perivascular support. Axial stretch did not significantly affect changes in circumferential stretch or stress upon pressurization, but circumferential tethering caused arteriolar geometry to change from a circular cross-section at normal pressure to an elliptical one at pressures above and below normal. Calculations suggested that the observed levels of ellipticity could cause a modest decrease in volumetric blood flow, but also a pronounced variation in shear stress around the circumference of the arteriole. An elliptical cross-section could thus increase vascular resistance or promote luminal remodeling at pressures different from normal. This characterization of effects of perivascular tethering on pial arterioles should prove useful in future studies of roles of perturbed cerebral blood flow on the propensity of the cerebral microcirculation to remodel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号